
Michael Becker, michael@linguist.umass.edu January 19 2006
University of Massachusetts, Amherst TAU Linguistics Department

Computational Optimality Theory with finite candidate sets∗

Highlights:

• CCamelOT is an open-source web-based program that takes an input and a con-
straint ranking, and finds the output using OT-CC.

• OT-CC (“OT with Candidate Chains”, ?) is a theory of phonology with finite
candidate sets, so CCamelOT can produce complete candidate sets and find the
outputs in them.

• CCamelOT’s interface includes ready-to-use phonological building blocks and
constraints, making it a valuable tool for researchers and instructors in OT.

Roadmap:

• The theoretical underpinnings of CCamelOT
• CCamelOT as a transparent model of phonology
• Using CCamelOT in OT research and teaching

1 Infinity in Classic OT

A candidate set in Classic OT (?) is infinite, so it would take infinitely long to generate
one in full.

(1) /pat/→

GEN

phonological
operations

→

pat
pat@
pat@P
pat@P@

pat@P@P
pat@P@P@

...

→

EVAL

constraint
evaluation

→ [pat@]

∗I am grateful to Kathryn Flack, Shigeto Kawahara, John McCarthy and Matt Wolf for wonderfully
helpful discussions. I also got great feedback from Tim Beechey, Peter Jurgec, Mike Key, John Kingston,
Joe Pater, Chris Potts, and Anne-Michelle Tessier. Thanks also to the audience in the LSA 80th meeting
in Albuquerque, New Mexico, and especially to Luigi Burzio, Jason Riggle, Donca Steriade and Adam
Wayment. There are no remaining errors.

Most of the candidates, however, are uninteresting. How can we find only the
interesting candidates?

Most of the uninteresting candidates are harmonically bounded, i.e. they cannot win
under any ranking of the constraints. In (??), candidate (c) is harmonically bounded
by (a), and (d) is harmonically bounded by (b).

(2) / pat / *CODA DEP

a. pat *
Z b. pat@ *

c. pat@P * **
d. pat@P@ ***

...

2 Finite candidate sets in Finite State OT

2.1 Finite state machines

A finite state machine is a collection of STATES and ARCS that combine them. A
machine has one START STATE (on the left) and one or more END STATES (doubly
circled).

(3) A finite state machine that represents the string “pat”:

(4) A machine that represents two strings: “pa” and “pat”:

(5) A machine that represents the mapping of “pat” to “pate” (e.g. input-output
mapping).

2.2 Finite state rules (Johnson 1972, Kaplan and Kay 1994)

We can think of the rule in (??) as a mapping from all possible strings (inputs) to
strings that end in vowels (outputs).

(6) Ø→ e / C __ #

The finite machine in (??) represents an infinite number of input-output pairs. The
inputs are all possible combinations of {p,t,a,e}, and the machine adds an “e” to
consonant-final inputs.

Michael Becker, michael@linguist.umass.edu – 1 – TAU Linguistics department, January 19 2006

(7) Final epenthesis machine

This machine can accept a consonant and output it, but it cannot stop there. In order to
reach an END STATE, the machine must either accept a vowel and output a vowel, or
accept nothing and output “e”. So this machine represents the mapping of all phoneme
sequences to sequences that end in a vowel.

2.3 Finite State Constraints (?)

(8) A markedness constraint is a function from output forms to numbers of viola-
tions. A machine that represents a constraint reads an output form and writes
violations. The total number of violations is obtained by collecting all the vio-
lation marks written.

(9) The *CODA machine

A violation of *CODA is incurred whenever the sequence “p.” ([p] followed by
a syllable break) is found in the output.

The *CODA machine has two states:

• *CODA0 = The current symbol is a vowel, so there is no risk of a *CODA
violation).

• *CODA1 = The current symbol is a consonant, and if a syllable break is
written after it, a *CODA violation will be incurred.

A faithfulness constraint is represented in ? as a machine that maps input strings to
<output, violations> pairs.

(10) The DEP machine

Constraints can be combined with inputs, to form finite machines that represent infinite
candidate sets.

(11) DEP combined with /pat/

(12) There is an infinite number of paths through the DEP machine, from the start
state (0) to the end state (3). Each path corresponds to an output candidate and
a number of DEP violations relative to the input /pat/.

(13) The winner is found by going through the machine, choosing the best arc (most
harmonic arc) at each step.

2.4 The limits of finite state OT

(14) Finite state machines cannot encode unbounded dependencies

• Full reduplication
• Unbounded metathesis
• Floating segments/tones (theory dependent)

(15) Finite state machines become huge even with bounded dependencies

• Partial (templatic) reduplication
• Metathesis (local / across vowels)
• Infixation

(16) The faithfulness constraints in ? hard-wire repairs into the constraints

• Each arc represents a mapping from an input symbol to an <output sym-
bol, violation> pair. The evaluation is done together with the (un)faithful
mapping.

• The DEP machine (repeated)

2.5 Rule-based phonology and conspiracies

(17) In rule based phonology, the input is mapped onto the output by going through
a series of ordered re-write rules. For instance, a rule might specify schwa
epenthesis after word-final consonants:

• Input: /pat/
• Rule: Ø→ @ / C__
• output: [pat@]

The rule ensures that there are no final consonants on the surface.

(18) The same language might have a rule that deletes word-final h’s:

• Input: /pah/
• Rule: h→ Ø / __#
• output: [pa]

Michael Becker, michael@linguist.umass.edu – 2 – TAU Linguistics department, January 19 2006

If the deletion rule is ordered before the epenthesis rule, final h’s will be deleted
and all other final consonants will be followed by schwa.

(19) The lack of surface final consonants in the language was accounted for, but the
generalization was not captured.

Rules cannot capture conspiracies (?), AKA cases of “homogeneity of target /
heterogeneity of process”.

(20) The key achievement of OT is the separation of constraints and repairs.

3 Finite Candidate sets in OT-CC

3.1 Harmonic improvement

?: In OT, the winner is either completely faithful to the input, or less marked than the
input.

(21) Given an input /A/ and an OT grammar, the output is either [A] or some [B] that
is less marked than [A].

(22) [A] is the the fully faithful candidate, the most harmonic candidate that incurs
no faithfulness violations.

(23) The output is the most harmonic candidate. If the output is different from the
fully faithful candidate −→ the output is less faithful and less marked than the
fully faithful candidate.

(24) /pat/ *CODA DEP

a. pat *
Z b. pat@ *

3.2 OT-CC, Optimality Theory with Candidate Chains

OT-CC (?) is a theory of phonology that builds on Moreton’s “harmonic improve-
ment”, and adds the idea that improving the input is done one step at a time.

In this theory, a candidate is not just a surface form, it is a chain of forms that starts
with the input and derives the output one step at a time.

(25) Given an input /A/ and a surface form [B], the winner is a
candidate chain such that:

• The first link in the chain is [A]
• The last link in the chain in [B]
• Every link in the chain is more harmonic than the preceding link

• Every link in the chain adds exactly one basic phonological operation =
one Localized Unfaithful Mapping (LUM)

(26) Example: given the input /pat/ and the grammar *CODA » DEP,
the chain <pat, pat@> is the winner, since

• [pat] is the fully faithful candidate
• [pat@] is more harmonic than [pat] given the grammar
• [pat]→ [pat@] adds exactly one LUM: epenthesis of a schwa

(27) Given the input /pat/ and the grammar *CODA » DEP, *VTV

• <pat, pat@, pad@> is the winner
• *<pat, pat@> is a possible chain (but not the winner)
• **<pat, pad@> is not (epenthesis and voicing done at once)1

• **<pat, pad, pad@> is not (not harmonically improving)

The basic phonological operations include epenthesis of one segment, deletion of one
segment, and change of one feature. The operations derive the input from the output
one step at time.

3.3 Finite candidate sets

OT-CC candidate sets are finite if we are know that:

• Each chain is finitely long
• The number of chains is finite

(28) What are possible ways to make a chain infinitely long?

• Unbounded epenthesis
• Repeating forms in the chain

If these things don’t happen, all chains are finitely long.

(29) Chains can’t have unbounded epenthesis: **<A, AA, AAA, AAAA, ...> thanks
to the nature of markedness and faithfulness2:

• Markedness constraints can’t cause unbounded epenthesis, because they
only look at the output. They can only demand epenthesis up to a certain
size (e.g. minimal word).

• Faithfulness constraints demand input-output identity, so they can’t call
for epenthesis. 3

1One star marks a losing chain, two stars mark an ill-formed chain
2In terms of ?, the grammar is “eventually idempotent”.
3Anti-faithfulness (?) constraints can call for epenthesis, but they are always satisfied by a single opera-

tion. They can demand epenthesis of no more than one phonological unit relative to the input.

Michael Becker, michael@linguist.umass.edu – 3 – TAU Linguistics department, January 19 2006

(30) Forms can’t repeat in a chain: **<A, B, A, B, A, B, ...>

If A follows B in a chain, then A is more harmonic than B
If B follows A in a chain, then B is more harmonic than A
It’s impossible for A to be more and less harmonic than B

(31) The number of chains is finite because the number of operations is finite.

Starting with the trivial one-link chain, a finite number of two-link chains will
be created. From those, a finite number of three-link chains will be created, etc.,
until chains can’t get any longer.

4 Finite derivations with CCamelOT

To find CCamelOT, just Google “CCamelOT”, or go here:
http://wwwx.oit.umass.edu/~linguist/CCamelOT/
Start with the guided tour to get an idea of how CCamelOT works.

(32) CCamelOT uses OT-CC principles to run an input through a grammar and find
the output.

(33) The derivation takes the input and applies phonological operations to it one at
a time, to find all forms more harmonic than the input. The number of these
forms is guaranteed to be finite, and in practice it is often very small.

Try the input /pat/ with this grammar:
MAX » *APPENDIX » *C/NUC » *CODA » DEP
You will find this grammar in the “Ranking” page, under the “Open” tab.

(34) The derivation starts with a trivial one-link chain, which contains the fully faith-
ful candidate (= the input as syllabified by the grammar).

(35) The fully faithful candidate goes through one round of application of the phono-
logical operations: deletion of a single segment, epenthesis of a single segment
(@ or P), change of one feature (+ to – or vice versa).
Whenever the output of an operation is more harmonic than the fully faithful
candidate, a two-link chain is created.

Add *VTV to your grammar to see inter-vocalic voicing.

(36) The final links in the two-links chains are passed through one round of phono-
logical operations, to produce three-link chains. And so on, until no more chains
can be created.

(37) /pat/ MAX *CODA DEP *VTV
a. <pat> *
b. <pat, pat@> * *

Z c. <pat, pat@, pad@> *
d. **<pat, pa> *

5 CCamelOT phonological representations

CCamelOT has the kind of representations that we normally assume, so it can be a
useful tool for testing hypotheses about the ways phonological structure works.

(38) CCamelOT’s linguistic forms are represented using segmental, prosodic and
morphological structure.

• Segments have indices used for computing Correspondence relations (?)
• Segments are associated with moras and syllables
• Phonemes are bundles of features
• Forms have morphological structure (root vs. affix).

This lays the foundations for phonological representations that are essentially
identical to representations typically assumed in generative phonology.

To customize the linguistic representations, download CCamelOT’s source:
http://wwwx.oit.umass.edu/~linguist/CCamelOT/needCON.cgi

• A table of phonemes and their features is kept in a separate file, so they
are easy to change (see the Help page).

• The infrastructure is there for extending the existing prosodic structures
to include feet, prosodic words, etc.

• Implementing autosegmental representations or finer morphological
structure would demand more thinking.

6 CCamelOT constraints

CCamelOT provides a transparent model of OT constraints, so CCamelOT constraints
can teach us something about the OT constraints that we work with.

Like OT, CCamelOT has two kinds of constraints:

Michael Becker, michael@linguist.umass.edu – 4 – TAU Linguistics department, January 19 2006

• Markedness: a function from outputs to integers (number of violations).
• Faithfulness: a function from <input, output> pairs to integers.

(39) Markedness: ONSET

Assign one violation mark for every syllable whose first segment is a vowel

In pseudo-code:

1 violations = 0
2 for each (i in output.syllables) {
3 if (i.phonemes[0].consonantal = "V") {
4 violations++
5 }
6 }
7 return violations

1. Start with zero violations
2. Go over the syllables of the output
3. Look at the consonantal feature of the first phoneme in that syllable - is it a
vowel?
4. If so, add one to the count of violations
7. Return the number of ONSET violations found

(40) Faithfulness: IDENT(voice)

Assign one violation mark for every segment of the output i that has an input
correspondent j, and i’s value for [voice] is different from j’s.

In pseudo-code:

1 violations = 0
2 for each (i in output.indices) {
3 for each (j in input.indices) {
4 if (i = j) {
5 if (i.phoneme.voice != j.phoneme.voice) {
6 violations++
7 }
8 }
9 }
10 }
11 return violations

1. Start with zero violations
2. Go over the output’s segment indices
3. For each output segment, go over the input’s segment indices
4. Is there is a corresponding input-output pair of segments?
5. If so, is [voice] in the input different from [voice] in the output?
6. If so, add one to the count of violations
11. Return the number of IDENT(voice) violations found

Want to add your own constraints to CCamelOT?
To download CCamelOT’s source, go to:
http://wwwx.oit.umass.edu/~linguist/CCamelOT/needCON.cgi

7 Using CCamelOT in research

(41) CCamelOT can find candidates you haven’t thought of, and help you make your
analyses more explicit. E.g.:

• We tend to think that the ranking of ONSET and *CODA has no effect on
the analysis.

• CCamelOT shows that given a low ranking *C/NUC, the ranking of ON-
SET and *CODA is crucial.

Michael Becker, michael@linguist.umass.edu – 5 – TAU Linguistics department, January 19 2006

Try the input /ta:nµ/ with this grammar:
*APPENDIX » MAX » DEP » *CODA » ONSET » *3µ » IDENT(length)
» *C/NUC
Then promote ONSET over *CODA.
You will find this grammar in the “Ranking” page, under the “Open” tab.

(42) When the number of constraints gets too big for human processing, CCamelOT
can help you find crucial rankings.

(43) If you download CCamelOT and build constraints that you need, that can help
you think more carefully about the logic of your constraints.

• How do ALIGN constraints evaluate forms? How should deleted segments
and epenthetic segments affect alignment?

Bruce Hayes on the pros and cons of using computer simulations in OT:
http://www.linguistics.ucla.edu/people/hayes/otsoft/why.htm

8 Using CCamelOT in teaching

CCamelOT can be useful not only in teaching OT-CC, but also in teaching Classic OT.
Here are some Classic OT concepts that your students can learn with CCamelOT:

(44) Ranking of universal violable constraints

• Factorial typology
• Crucial vs. non-crucial rankings

(45) General/specific relations (stringency relations) between constraints

• *CODA / *COMPLEXCODA

• IDENT(voice) / IDENTROOT(voice)

(46) Harmonic improvement

• Learning to think in terms of relative harmony
• Harmonic bounding

For students with basic computer skills, CCamelOT offers a ready-to-use interface.
Students with some background in programming can download the source and add
new constraints.

9 Summary

• CCamelOT is a program that runs an input through a grammar and finds the
output, based on principles of OT-CC.

• CCamelOT models the linguistic representations and constraints that OT phonol-
ogists assume. This makes CCamelOT a useful tool for testing hypotheses.

• CCamelOT’s interface includes ready-to-use phonological building blocks and
constraints, making it a valuable tool for researchers and instructors in OT.

[Try the guided tour!]

• CCamelOT’s open code is an invitation to further our ability to model phonolog-
ical theory computationally.

References

Alderete, John (2001). Dominance effects as trans-derivational anti-faithfulness.
Phonology 18. 201–253.

Kisseberth, Charles (1970). On the functional unity of phonological rules. Linguistic
Inquiry 1. 291–306.

McCarthy, John J. (forthcoming). Hidden Generalizations: Phonological Opacity in
Optimality Theory. London: Equinox Publishing Company.

McCarthy, John J. & Alan Prince (1995). Faithfulness and reduplicative identity. In
Jill N. Beckman, Laura Walsh & Suzanne Urbanczyk (eds.) Papers in Optimality
Theory, University of Massachusetts Occasional Papers 18, University of Massa-
chusetts, Amherst: GLSA. 249–384.

Moreton, Elliott (2004). Non-computable functions in optimality theory. In John J.
McCarthy (ed.) Optimality Theory in Phonology, Blackwell. 141–163.

Prince, Alan & Paul Smolensky (2004). Optimality Theory: Constraint Interaction in
Generative Grammar. Blackwell.

Riggle, Jason (2004). Generation, Recognition, and Learning in Finite State Optimal-
ity Theory. Ph.D. dissertation, UCLA.

Michael Becker, michael@linguist.umass.edu – 6 – TAU Linguistics department, January 19 2006

