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Abstract Harmonic Grammar (HG) is a model of linguistic constraint interac-
tion in which well-formedness is calculated in terms of the sum of weighted
constraint violations. We show how linear programming algorithms can be used
to determine whether there is a weighting for a set of constraints that fits a set
of linguistic data. The associated software package OT-Help provides a practical
tool for studying large and complex linguistic systems in the HG framework
and comparing the results with those of OT. We first describe the translation
from harmonic grammars to systems solvable by linear programming algorithms.
We then develop an HG analysis of ATR harmony in Lango that is, we argue,
superior to the existing OT and rule-based treatments. We further highlight the
usefulness of OT-Help, and the analytic power of HG, with a set of studies of the
predictions HG makes for phonological typology.
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1 Introduction

We examine a model of grammar that is identical to the standard version of
Optimality Theory (OT: Prince & Smolensky 1993/2004), except that the optimal
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input–output mapping is defined in terms of weighted rather than ranked con-
straints, as in Harmonic Grammar (HG; Legendre, Miyata & Smolensky 1990a,b;
see Smolensky & Legendre 2006 and Pater 2009b for overviews of subsequent
research). We introduce a method for translating learning problems in this
version of HG into linear models that can be solved using standard algorithms
from linear programming. The implementation of this method facilitates the use
of HG for linguistic research.

The linear programming model returns either a set of weights that correctly
prefers all of the intended optimal candidates over their competitors or a verdict
of infeasible when no weighting of the given constraints prefers the indicated
optima. Thus, we provide for HG the equivalent of what the Recursive Constraint
Demotion Algorithm (Tesar & Smolensky 1998b) provides for OT: an algorithm
that returns an analysis for a given data set with a given constraint set, and
that also detects when no such analysis exists. In addition, we present OT-Help
(Becker, Pater & Potts 2007; Becker & Pater 2007), a graphically-based program
that can take learning data formatted according to the standards defined for the
software package OTSoft (Hayes, Tesar & Zuraw 2003) and solve them using our
LP approach (and with Recursive Constraint Demotion).1 The public availability
of OT-Help will help research on weighted constraint interaction to build on
results already obtained in the OT framework.

We start by discussing the model of HG we adopt and its relationship to
its better-known sibling OT (section 2). Section 3 states the central learning
problem of the paper. We then describe our procedure for turning HG learning
problems into LP models (section 4). Section 5 develops an HG analysis of an
intricate pattern of ATR harmony in Lango. The analysis depends crucially on the
kind of cumulative constraint interaction that HG allows, but that is impossible
in standard OT. We argue that the HG approach is superior to Archangeli &
Pulleyblank’s (1994) rule-based analysis and Smolensky (2006)’s constraint-
conjunction approach. Finally, section 6 is a discussion of typology in HG, with
special emphasis on using large computational simulations to explore how OT
and HG differ. That discussion deepens our comparison with OT, and it highlights
the usefulness of using efficient LP algorithms to solve linguistic systems. We
show that comparisons between OT and HG depend on the contents of the
constraint sets employed in each framework, and that the greater power of
HG can in some cases lead, perhaps surprisingly, to more restrictive typological
predictions.

1 In addition, the popular open-source software package Praat (Boersma & Weenink 2009) now
offers, as of version 5.0.18, an HG solver designed using the method we introduce here.
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2 Overview of Harmonic Grammar

In an optimization-based theory of grammar, a set of constraints chooses the
optimal structures from a set of candidate structures. In this paper, candidates
are pairs 〈In,Out〉 consisting of an input structure In and an output structure
Out. In HG, optimality is defined in terms of a harmony function that associates
each candidate with the weighted sum of its violations for the given constraint
set. The weighted sum takes each constraint’s violation count and multiplies it
by that constraint’s weight, and sums the results:

Definition 1 (Harmony function). Let C= {C1 . . .Cn} be a set of constraints, and
let W be a total function from C into positive real numbers. Then the harmony
of a candidate A is given byHC,W(A) =

∑n
i=1 W(Ci) ·Ci(A).

We insist on only positive weights. While there is no technical problem with
allowing a mix of negative and positive weights into HG, the consequences for
linguistic analysis would be serious. For example, a negative weight could turn a
penalty (violation count) into a benefit. For additional discussion of this issue,
see Prince 2003; Boersma & Pater 2008: §3.5; Pater 2009b: §2.1.

The constraints themselves are functions from candidates into integers. We
interpret C(A) =−4 to mean that candidate A incurs four violations of constraint
C. We also allow positive values: C(A) = 4 thus means that A satisfies constraint
C four times. In this paper, we use only constraint violations (negative numbers),
but the approach we present is not limited in this way.

The optimal candidates have the highest harmony scores in their candidate
sets. Since we represent violations with negative natural numbers, and weights
are positive, an optimum will have the negative score closest to zero, which can
be thought of as the smallest penalty. As in OT, this competition is limited to
candidates that share a single input structure. In anticipation of the discussion
in section 4, we make this more precise by first defining the notion of a tableau,
the basic domain over which competitions are defined:

Definition 2 (Tableaux). A tableau is a structure (AIn,C), where AIn is a (possibly
infinite) set of candidates sharing the input In, and C is a (finite) constraint set.

We can then define optimality in terms of individual tableaux: the optimum
is a candidate that has greater harmony than any of the other members of its
candidate set:

Definition 3 (Optimality). Let T =(AIn,C) be a tableau, and let W be a weighting
function for C. A candidate A= 〈In,Out〉 ∈AIn is optimal iffHC,W(A)>HC,W(A′)
for every A′ ∈ (AIn−{A}).
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The use of a strict inequality rules out ties for optimality, and brings our HG
model closer to the standard version of OT, whose totally ordered constraint sets
also typically select a unique optimum (if the constraint set is large enough).
Languages with tied optima are not of particular interest, since the resulting
variation is unlikely to match actual language variation (see the discussion below
of existing theories of stochastic HG, which either render ties vanishingly improb-
able, as in Noisy HG, or completely eliminate the notion of an optimum, defining
instead a probability distribution over candidates, as in MaxEnt grammar).

Goldsmith (1991: 259, fn. 10) proposes to model phonological interactions
using weighted constraints; he describes an account on which constraint viola-
tions can involve variable costs, which encode relative strength and determine
relative well-formedness. Goldsmith’s (1990: §6.5) discussion of violability and
cost accumulation contains clear antecedents of these ideas; see also Goldsmith
1993, 1999.

Prince & Smolensky (1993/2004: 236) also discuss a version of OT that
uses weighted sums to define optimality. Our formulation follows that of Keller
(2000, 2006) and Legendre, Sorace & Smolensky (2006), though it differs from
Legendre et al.’s in demanding that an optimum in a candidate set be unique,
which is enforced by using a strict inequality (the harmony of an optimum is
greater than its competitors). This is a simplifying assumption that allows for
easier comparison with the typological predictions of OT.

Example (4) is a typical representation of a tableau for HG. The single
shared input is given in the upper left, with candidate outputs below it and their
violation scores given in tabular format. The representation is like those used for
OT, but without ranking being signified by the left-to-right order, as well as the
addition of a weighting vector in the topmost row and the harmony scores for
each candidate in the rightmost column.

(4) A weighted constraint tableau

Weights 2 1 H
Input C1 C2

� OutputA 0 −1 −1
OutputB −1 0 −2

By definition 3, OutputA is chosen as the optimal output for Input. Optimal
candidates are marked with the pointing hand.

We emphasize that our version of HG, as characterized by definition 3 is,
like OT, an optimization system. Our HG grammars do not impose a single
numerical cut-off on well-formedness, but instead choose the best outcome for
each input. This point is vital to understanding how the systems work, but it is
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easily overlooked. Thus, we pause to illustrate with a brief example modeled on
one discussed by Prince & Smolensky (1997: 1606). (For additional discussion,
see Pater 2009b.)

We assume that it is typologically implausible that we will find a natural
language in which a single coda is tolerated in a word but a second coda is
deleted. Such a language would map the input /ban/ faithfully to [ban], but
would map input /bantan/ to [ba.tan] or [ban.ta]. Such patterns are unattested,
arguably for fundamental reasons about how natural languages work, so we
would like our theory to rule them out. In OT, it can be shown that this pattern
would require contradictory rankings: NOCODA would have to outrank, and be
outranked by, MAX, which is impossible.

HG delivers exactly the same result. To make deletion of one of two potential
codas optimal, as in (5a), NOCODA must have a weight greater than MAX. To
make preservation of a single potential coda optimal, as in (5b), MAX must have
a greater weight than NOCODA. (We use specific weights to illustrate how the
calculations work.)

(5) a.
Weights 2 1 H
/bantan/ NOCODA MAX

ban.tan −2 0 −4
� ba.tan −1 −1 −3

b.
Weights 1 2 H
/ban/ NOCODA MAX

� ban −1 0 −1
ba 0 −1 −2

The contradictory weighting conditions for (5a) and (5b) can be represented
more generally as in (6a) and (6b), respectively. These statements are the HG-
analogues of the contradictory pair of ranking statements we would require in
OT.

(6) a. W(NOCODA)>W(MAX)

b. W(NOCODA)<W(MAX)

What’s more, if we include complete candidate sets for the evaluation, then
assigning greater weight to NOCODA selects the mapping /bantan/ → [ba.ta]
as optimal, whereas assigning the greater weight to MAX selects the mapping
/bantan/ → [ban.tan] as optimal, just like the two possible total rankings of
these constraints in OT.
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Importantly, if we were to impose a numerical cut-off on well-formedness,
then we could rule out /bantan/→ [bantan] but allow /batan/→ [batan] (with,
for example, W(NOCODA) = 2, and the cut-off above 2 and below 4). However,
our version of HG does not impose numerical cut-offs. (For versions of HG that
do generate this sort of pattern, see Jäger 2007 and Albright, Magri & Michaels
2008.)

As this example illustrates, the grammatical apparatus is designed to model
entire languages, not just individual mappings from input to optimal output.
Thus, we deal primarily with tableau sets, which are sets of tableaux that share
a single set of constraints but have different inputs:

Definition 7 (Tableau sets). A tableau set is a pair (T,C) in which T is a set of
tableaux such that if T = (AIn,C′)∈ T and T ′= (A′In′ ,C

′′)∈ T and T 6= T ′, then
In 6= In′ and C=C′=C′′.

Given a tableau set (T,C), a weighting function W determines a language
by selecting the optimal candidate, if there is one, from each tableau T ∈ T.
Since our definition 3 uses a strict inequality, some tableaux could theoretically
lack optimal candidates. We note again that by using a strict inequality, our
definition involves a simplification. Versions of the theory that are designed to
handle variation between optima across instances of evaluation do not make this
simplifying move (see, e.g., Boersma & Pater 2008).

HG is of interest not only because it provides a novel framework for linguistic
analysis, but also because its linear model is computationally attractive. HG was
originally proposed in the context of a connectionist framework. OT ranking has
so far resisted such an implementation (Prince & Smolensky 1993/2004: 236;
Legendre et al. 2006: 347). Beyond connectionism, HG can draw on the well-
developed models for learning and processing with linear systems in general,
and the basic apparatus can be used in a number of different ways. For example,
a currently popular elaboration of the core HG framework we explore here is the
probabilistic model of grammar proposed by Johnson (2002), and subsequently
applied to phonology by Goldwater & Johnson (2003), Wilson (2006), Jäger
(2007), and Hayes, Zuraw, Siptár & Londe (2008). In this log-linear model
of grammar, usually referred to as Maximum Entropy (MaxEnt) grammar, the
probability of a candidate is proportional to the exponential of its harmony,
calculated as in definition 1 above. By assigning a probability distribution to
candidates, a MaxEnt grammar can deal with the “free variation” that is captured
in OT as probabilistic variation in the ranking of constraints (see Coetzee &
Pater 2008 for an overview of OT and HG models of variation). As the above-
cited papers emphasize, MaxEnt grammar is particularly appealing in that it has
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associated provably convergent learning algorithms, unlike extant approaches to
variation in OT.

Stochastic versions of HG like MaxEnt grammar and Boersma & Pater’s
(2008) Noisy HG can subsume our categorical model as a special case in which
all candidates have probabilities approaching 1 or 0. What then, is the interest of
our more restrictive approach? We see it as a useful idealization that facilitates
analysis of individual languages and typological study. Even when the analyst’s
ultimate aim is to provide a stochastic HG account of a case involving variation,
it can be useful to first develop a categorical analysis of a subset of the data.

Despite its attractive properties, HG has been little used in analyzing the
patterns of constraint interaction seen in the grammars of the world’s languages.
One possible reason for the relative neglect is that researchers may have assumed
that HG would clearly produce unwanted typological results (Prince & Smolensky
1993/2004: 233). In related work, Pater (2009b) argues that this assumption
should be re-examined. By studying a categorical version of HG that differs so
minimally from OT, it becomes possible to gain a clearer understanding of the
difference between a theory of grammar that has ranked constraints and one
that has weighting. Both the Lango ATR harmony analysis of section 5 and the
typological investigations of section 6 focus on uncovering these differences.

Another likely reason that HG is relatively understudied is that it can be
difficult to calculate by hand a weighting for a set of constraints that will correctly
prefer the observed output forms over their competitors. Furthermore, in doing
linguistic analysis, we are often interested in showing that a particular set of
outputs can never co-exist in a single language, that is, in showing that a theory
is sufficiently restrictive. Establishing that none of the infinitely many possible
weightings of a set of constraints can pick a set of outputs as optimal may seem
to be an insurmountable challenge. These problems are the motivation for
our development of a translation from HG learning to LP solving, and for the
implementation of this procedure in OT-Help.

3 Our HG learning problem

The learning problem that we address, in this paper and with OT-Help, is defined
in (8).

(8) Let (T,C) be a tableau set, and assume that each tableau T =(AIn,C)∈T
is finite and contains exactly one designated intended winning candi-
date o ∈AIn. Let O be the set of all such intended winners. Is there a
weighting of the constraints in C that defines all and only the forms
in O as optimal (definition 3)? If so, what is an example of such a
weighting?
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This is analogous to a well-studied problem in OT (Prince & Smolensky 1993/2004;
Tesar & Smolensky 1998b; Prince 2002): given a set of grammatical forms and a
set of constraints C, is there a ranking of the constraints in C that determines all
and only the grammatical forms to be optimal?

Our approach to the problem is categorical: for a given subset A of the full
set of candidates, the algorithm either finds a Harmonic Grammar that specifies
all and only the members of A as optimal, or else it answers that there is no
such Harmonic Grammar. This is by no means the only approach one could take
to (8) and related questions. As we mentioned earlier, there are many useful
perspectives, including those that allow for approximate learning, those that
model learning in noise, and so forth. Our particular approach to answering
(8) is ideally suited to examining typological predictions of the sort discussed in
section 6 below.

We do not, in this paper, address the issue of candidate generation, focusing
instead on the twin problems of evaluation and typological prediction. Like
the OT implementations in OTSoft (Hayes et al. 2003) and Praat (Boersma &
Weenink 2009), and the HG implentations in Praat and those discussed in the
MaxEnt literature cited above, we take the candidates as given. This introduces
the risk of spurious conclusions based on non-representative candidate sets, but
we see no satisfactory way around the problem at present. Riggle (2004a,b)
shows how to generate the full set of candidates that are optimal under some
ranking of the constraints, but that holds only if, among other things, all the
constraints have finite-state implementations. The result carries over to HG.
However, it would be a mistake for us to prematurely limit HG to this set of
constraints in this way. This is not a limitation that the OT community has made,
and we know of no reason to assume that HG makes this more pressing than it
is in other approaches.

Although HG does not impose finiteness limitations on its candidate sets, (8)
restricts attention to the finite case, in recognition of the fact that OT-Help can
deal only with finite systems. There are linear programming methods for dealing
with situations in which, in present terms, the candidate set is infinite but the
constraint set is finite; López & Still 2007 is an overview.2 However, exploring
such algorithms is outside the bounds of this paper. In addition, we suspect
that the proper approach here is not to explicitly allow infinite candidate sets,
but rather to take a constructive approach to exploring the space of potential
winners, as in Harmonic Serialism (McCarthy 2007, 2009; Pater To appear).3

2 We thank an anonymous reviewer for bringing this work to our attention.
3 The next version of OT-Help will implement Harmonic Serialism, in which generation and

evaluation are combined (McCarthy 2007, 2009; Pater To appear).
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It is typically fairly easy to answer question (8) for small systems like (9).
Here we follow Tesar & Smolensky (1998b) in referring to the desired optimal
form as the ‘Winner’, and the desired sub-optimal candidates as the ‘Losers’.

(9)
Weights H

Input C1 C2 C3
Winner −4 0 −4

Loser 0 −2 0

For (9), we can swiftly reason to the conclusion that a weighting 〈1,4.1,1〉
suffices. That is, we can use a weighting function W such that W(C1)=1, W(C2)=
4.1, and W(C3) = 1. This gives 〈Input,Winner〉 a total weighted violation count
of −8 and 〈Input,Loser〉 a total weighted violation count of −8.2. And it is easy
to see furthermore that many other weightings work as well. But it quickly
becomes challenging to reason this way. Hand-calculations are prohibitively
time-consuming even for modestly-sized systems. This is where LP methods
become so valuable. They can answer question (8) quickly for even very large
and complex systems. We turn now to the task of showing how to apply such
algorithms to these data.

4 From linguistic data to linear systems

In this section, we build a bridge from linguistics into the domain of LP algo-
rithms. In doing this, we make powerful and efficient tools available to the
linguist wishing to grapple with large, complex data sets. Our description closely
follows the algorithm we employ in OT-Help, which incorporates the stand-alone
HG solver HaLP (Potts, Becker, Bhatt & Pater 2007), which has a Web interface
that allows users to upload their own data files and which displays its results in
HTML. Our discussion proceeds by way of the simple tableau set in (10).

(10)






Input1 C1 C2
Winner1 0 −2

Loser1 −6 0

Input2 C1 C2
Winner2 −1 0

Loser2 0 −1







In OT, these two winner–loser pairs are inconsistent, since Winner1 requires
C1� C2, and Winner2 requires C2� C1. Our primary task is to determine
whether the same is true in HG, or whether there is a weighting vector 〈w1,w2〉
that selects 〈Input1,Winner1〉 and 〈Input2,Winner2〉 as optimal.
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4.1 Equations in the linear system

We first convert the weighting conditions into linear inequalities. For each
winner–loser pair, we want an inequality that guarantees that the winner has
greater harmony than the loser, as in definition 3 above. Weighting conditions
like those in (6) are useful for getting a handle on the problem analytically. For
the tableau depicted on the left in (10), the weighting condition is (11a), and
for the tableau on the right in (10), the weighting condition is (11b).

(11) a. (0 ·W(C1))+(−2 ·W(C2))> (−6 ·W(C1))+(0 ·W(C2))

b. (−1 ·W(C1))+(0 ·W(C2))> (0 ·W(C1))+(−1 ·W(C2))

For the numerical optimizations to follow, we make extensive use of the following
notation:

(12) a. 0w1 + −2w2 > −6w1 + 0w2 =⇒
6w1 + −2w2 > 0

b. −1w1 + 0w2 > 0w1 + −1w2 =⇒
−1w1 + 1w2 > 0

The wi variables are the weights assigned by the weighting function W to these
constraints. Inequality (12a) expresses the requirement that the Winner1 output
is favored by the weighting over the Loser1 output, and (12b) expresses the
requirement that the Winner2 output is favored by the weighting over the Loser2
output. These inequalities are the HG equivalents of OT’s Elementary Ranking
Conditions (Prince 2002). They can be directly calculated from a winner–loser
pair by subtracting the loser’s score on each constraint from that of the winner.

Given a tableaux set (T,C), we translate each winner–loser pair in each
tableau in T into an inequality statement like the above. A weighting answers the
learning problem in (8) for (T,C) if, and only if, it satisfies all of these inequality
statements simultaneously.

4.2 The objective function

All and only the vectors 〈w1,w2〉 satisfying the inequalities in (12) are solutions
to the learning problem (8) for (10). The vectors 〈1,2〉 and 〈2,3〉 suffice, as do
an infinite number of others.

The structure of linear programming problems gives us an analytically useful
way of selecting from the infinitude of possible solutions to a problem like this.
The crucial notion is that of an objective function. Throughout this paper, we
work with very simple objective functions: just those that seek to minimize
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the sum of all the weights. Thus, for the two-constraint tableau set (10), the
objective function is (13).

(13) minimize 1w1+1w2

More generally, if there are n constraints, we seek to minimize
∑n

i=1 wi, subject
to the full set of inequalities for the system.

However, we’ve now run into a problem: our optimization problem is unde-
fined (Chvátal 1983: 43). The vector 〈1,2〉 is not a minimal feasible solution,
and neither are 〈1,1.5〉, 〈1,1.1〉, 〈1,1.0001〉, etc. Each is better than the previous
one according to (13); there is no minimal solution. Thus, we can never satisfy
(13); whatever solution we find can always be improved upon. The problem
traces to our use of strict inequalities. In stating the problem this way, we are
effectively stating a problem of the form ‘find the smallest x such that x > 0’,
which is also ill-defined.

It won’t do to simply change > to ¾, because that would insist only that the
winner be at least as good as the losers, whereas our version of HG demands
that the winner be strictly better. Thus, to address this problem, we solve for a
special constant a. It can be arbitrarily small, as long as it is above 0. It allows us
to have regular inequalities without compromising our goal of having the winner
win (not tie). This is equivalent to adding the amount a to the weighted sum of
the loser’s constraint violations. The value of a defines a margin of separation:
the smallest harmony difference between an optimum and its nearest competitor.
(Such margins of separation are important for the Perceptron convergence proof;
see Boersma & Pater 2008 for an application to HG.)

Our use of the margin of separation a renders certain systems infeasible that
would otherwise be feasible. These are the systems in which a winner can at
best tie its losing competitors. We want these systems to be infeasible, because
we want the winners to be strictly better. But one might wonder whether certain
choices of a could rule out systems that we want to judge feasible. For instance,
what happens if a is set to be very large? Could this incorrectly rule out a feasible
analysis?

The answer is no. We assume that there is no maximal weighting for any
constraint, and none of our systems contain the conditions that would impose
such a ceiling for particular cases. Thus, assume that the chosen constant is
a, and assume also that there is a weighting W for which one of the inequality
statements sums to a constant d that is smaller than a. Then we simply find a
linear rescaling of W that respects our choice of a rather than d. This rescaling
could result in infeasibility only if there were a maximal value for some weight.
But we assume that there are no such maxima.
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4.3 Blocking zero weights

The next question we address is whether to allow 0 weights. A weighting of
0 is equivalent to canceling out violation marks. To prevent such cancellation,
we can impose additional conditions, over and above those given to us directly
by the weighting conditions: for each constraint Ci, we can add the inequality
wi ¾ b, for some positive constant b. Once again, because we impose no maxima,
excluding this subregion does not yield spurious verdicts of infeasibility.

It is worth exploring briefly what happens if we remove the extra non-
0 restrictions (if we set the minimal weight b to 0). In such systems, some
constraint violations can be canceled out when weighted, via multiplication by
0. This cancellation occurs when a given constraint is inactive for the data in
question, i.e., when it is not required in order to achieve the intended result. For
example our current model returns 〈1,1,1〉 as a feasible solution for the small
system in (14) (assuming that we set the margin of separation a to −1 and the
minimal weight b to 1).

(14)
Weights 1 1 1 H

Input C1 C2 C3
Winner 0 −1 0 −1

Loser −1 0 −1 −2

In this solution, C1 and C3 gang up on C2: with this weighting, neither suffices
by itself to beat the loser, but their combined weighted scores achieve the result.
However, if we do not ensure that all weights are at least b, then the minimal
solutions for these data are 〈1,0,0〉 and 〈0,0,1〉, with either of C1 or C3 decisive
and the other two constraints inactive. As in this example, imposing a greater
than 0 minimum on weights tends to result in solutions that make use of gang
effects, while choosing a 0 minimum tends to find solutions that make use of a
smaller number of constraints. Exploring the differences between these solutions
(as is possible in OT-Help) may help an analyst better understand the nature of
the constraint interactions in a system.

4.4 The final form of the system

The linear system derived from (10) using the above procedure is given in figure
1 along with a geometric representation. To provide a concrete solution and a
visualization, we’ve set the margin of separation a to 1 and the minimal weight
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b to 1.4 The optimal weighting here is w1= 1 and w2= 2.

minimize 1w1 + 1w2

subject to 6w1 − 2w2 ¾ 1
−1w1 + 1w2 ¾ 1

1w1 ¾ 1
1w2 ¾ 1

Figure 1 Translation and graph of (10), with feasible region shaded.

The current version of OT-Help accepts OTSoft files as input, converts them
into tableau sets, translates them using the above procedure, and then solves
them with the simplex algorithm, the oldest and perhaps most widely deployed
LP algorithm (Dantzig 1981/1982; Chvátal 1983; Bazaraa, Jarvis & Sherali
2005).

4.5 Further remarks on the translation

Before putting these technical concepts to work solving linguistic problems, we
would like to pause briefly to use graphical depictions like the one in figure 1 to
clarify and further explore some of the decisions we made in translating from
tableau sets to linear systems. Because each linguistic constraint corresponds to
a dimension, we are limited two two-constraint systems when visualizing, but
the technique can nonetheless be illuminating.

4.5.1 Infeasibility detection

The graphical perspective immediately makes it clear why some linguistic systems
are predicted to be impossible: they have empty feasible regions. Our simple

4 This is the default for OT-Help. An advantage of this is that one often gets integer valued weights
back, which are helpful for studying and comparing systems.
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NOCODA/MAX example from section 2 provides a good case study. Our goal there
was to show that HG, like OT, predicts that it is impossible for a single language
to allow a /ban/ to surface faithfully as [ban], but for it to penalize just one of
the codas in /bantan/, thereby allowing something like [ba.tan] to surface. Here
is a tableau set seeking to specify such a language:

(15)







/bantan/ NOCODA MAX

ban.tan −2 0
� ba.tan −1 −1

/ban/ NOCODA MAX

� ban −1 0
ba 0 −1







In figure 2, we have transformed this tableau set into a linear system and plotted
it. The arrows indicate which region the two main inequalities pick out. There is
no area common to both of them, which is just to say that the feasible region is
empty.

minimize 1w1 + 1w2

subject to −1w1 + 1w2 ¾ 1
1w1 − 1w2 ¾ 1
1w1 ¾ 1

1w2 ¾ 1

Figure 2 The linear view of tableaux set (15). The intersection of all the areas
picked out by the inequalities is empty, which is just to say that no
grammar picks out the set of specified winners.

4.5.2 Margins of separation

We asserted, in section 4.2, that the precise value of a does not matter for
addressing the fundamental learning problem (8). Figure 3 helps bring out why
this is so. This figure differs minimally from the one in figure 1 in that the value
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of a here is 3 rather than 1. This narrows the bottom of the feasible region, and,
in turn, changes the minimal solution, from 〈1,2〉 to 〈21

4
,51

4
〉, but the important

structure of the system is unchanged.

minimize 1w1 + 1w2

subject to 6w1 − 2w2 ¾ 3
−1w1 + 1w2 ¾ 3

1w1 ¾ 1
1w2 ¾ 1

Figure 3 The system in figure 1, but with the value of a set to 3, rather than
1. The feasible region has narrowed at the bottom, and the solution
is different, but the basic structure remains the same.

One’s choice of the margin of separation a can have consequences for how
the solution generalizes to unseen data, that is, to tableaux that are not included
in the learning data. Suppose, for example, that we evaluate the candidates in
the following new tableau using the weights found with each of the two values
of a above:

(16)
Input3 C1 C2

Output3A 0 −4
Output3B −9 0

With a = 3, the optimal weighting vector is 〈21
4
,51

4
〉, which favors Output3A.

With a= 1, the optimal weighting vector is 〈1,2〉, which favors Output3B.

4.5.3 Stopping short of optimization

In discussing the objective function (section 4.2), we emphasized finding minimal
solutions. While knowing which is the minimal solution can be illuminating,
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it goes beyond the learning question (8), which simply asks whether there is
a feasible solution at all. Our approach can be simplified slightly to address a
version of this more basic question, with a resulting gain in efficiency. To see
this, we need to say a bit more about how the simplex algorithm works.5

The simplex algorithm begins by setting all the weights to 0 and then pivoting
around the edge of the feasible region until it hits the optimal solution according
to the objective function. Figure 4 illustrates for one of the basic two-variable
systems discussed by Cormen et al. (2001: 773). The arrows show one direction
that the simplex might take; which direction it travels depends on low-level
implementation decisions.

minimize −1w1 − 1w2
subject to −4w1 + 1w2 ¾ −8

−2w1 − 1w2 ¾ −10
5w1 − 2w2 ¾ −2

all wi ¾ 0

Figure 4 The simplex algorithm begins at the all-0s solution (the origin), and
then pivots around the edge of the feasible region until it finds the
vector that does best by the objective function.

For this problem, the all 0s solution is inside the feasible region, so it provides
a starting point. However, for all the systems arrived at via the conversion
method of section 4, setting all the weights to 0 results in an infeasible solution.
For this reason, our solver always goes through two phases. In phase one,
it constructs from the initial system an auxiliary system for which the all-0s
solution is feasible and uses this system to move into the feasible region of the
initial problem (ending phase one). In figure 1, this auxiliary program takes us

5 We stay at a relatively informal level here, since full descriptions of the simplex invariably run
to dozens of pages and involve making a variety of specific assumptions about data structures.
Chvátal (1983) presents a variety of different formulations, Cormen, Leiserson, Rivest & Stein
(2001: §29) give an accessible algebraic implementation in pseudocode, and Bazaraa et al. 2005
is an advanced textbook devoted to the simplex algorithm as well as its newer, theoretically more
efficient alternatives.
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from the origin of the graph to the point 〈1,21
2
〉, which is a feasible solution.

The phase-two optimization then brings us down to 〈1,2〉, which minimizes the
objective function.

The auxiliary program also provides us with a means for detecting infea-
sibility. One of the central pieces of this auxiliary program is a new artificial
variable, w0. After we have solved the auxiliary program, we check the value
of this variable. If its value is 0, then we can safely remove it and, after a few
additional adjustments, we have a feasible solution to the original problem. If
its value is not 0, however, then it is crucial to our finding a solution in the first
place, thereby indicating that the initial problem has no solutions. This is the
source of the verdict of ‘infeasible’ — the linguist’s cue that the grammar cannot
deliver the desired set of optimal candidates.

Thus, the question of whether there is a feasible weighting is answered during
phase one of the simplex, with phase two devoted to potential improvements
with regard to the objective function. If such improvements are not of interest,
then we can stop at the end of phase one.

5 Lango ATR harmony in HG

We now turn to linguistic analysis using HG, and our LP method as implemented
in OT-Help. A key argument for OT’s violable constraints is their ability to
reduce complex language-specific patterns to more general, plausibly universal
principles. For example, Prince & Smolensky (1993/2004: §4) show that a
complex pattern of stress in the dialect of Hindi described by Kelkar (1968)
can be reduced to the interaction of three general constraints. This reduction
depends on constraint violability: two of the three constraints are violated when
they conflict with a higher ranked constraint. In this section, we show that the
same sort of argument can be made for replacing OT’s ranked constraints with
weighted ones.

Our demonstration takes the form of a case study: ATR harmony in Lango,
as described in Bavin Woock & Noonan (1979), from which all the data below
are taken. Our analysis is based on generalizations originally uncovered by
Bavin Woock & Noonan,6 and draws heavily on the analyses of Archangeli &

6 Other descriptions of Lango include Okello 1975 and Noonan 1992. We follow Archangeli &
Pulleyblank’s (1994) characterization of Bavin Woock & Noonan’s description so as to facilitate a
comparison of our analysis with previous ones. However, it is worth noting a few relevant issues
in the data that should be investigated in future research. Okello (1975: 16ff) explicitly denies
that right-to-left harmony is limited to high vowel triggers, provides examples of two suffixes
with mid vowels that trigger harmony, and claims that the failure of a mid vowel to trigger is
morphologically determined. Harmony seems to be, in general, more pervasive in the dialect she
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Pulleyblank (1994) and Smolensky (2006). Smolensky’s use of local constraint
conjunction drew our attention to the possibility of a treatment in terms of
weighted constraints. In section 5.2, we argue that the HG analysis improves
on the earlier ones: its central principles are more general, and its typological
predictions are more restrictive.

Although the constraints in our analysis are simple, their interaction is
complex; a correct weighting must simultaneously meet a host of conditions.
Finding such a weighting involves extensive calculation. This analysis thus also
further illustrates the utility of OT-Help for conducting linguistic analysis in HG.

5.1 Cumulative constraint interaction in Lango

Lango has a ten vowel system, with five ATR vowels {[i], [e], [u], [o], [@]} and
five corresponding RTR vowels {[I], [E], [U], [O], [a]}. The following examples of
ATR spreading show that it targets RTR vowels in both suffixes (17a–d) and roots
(17e–h), in other words, that ATR spreads left-to-right (L-R) and right-to-left
(R-L). We have omitted tone from all transcriptions.

(17) a. /wot+E/ [wode] ‘son (3 sg.)’

b. /Nut+E/ [Nute] ‘neck (3 sg.)’

c. /wot+a/ [wod@] ‘son (1 sg.)’

d. /buk+na/ [bukk@] ‘book (1 sg.)’

e. /atIn+ni/ [atinni] ‘child (2 sg.)’

f. /dEk+ni/ [dekki] ‘stew (2 sg.)’

g. /lUt+wu/ [lutwu] ‘stick (2 pl.)’

h. /lE+wu/ [lewu] ‘axe (2 pl.)’

These examples also show that ATR spreads from high vowel triggers (17b, d–h)
as well from mid vowels (17a, c), and from both front vowels (17e, f) and back
ones (17a–d, g, h). The examples also show that it crosses consonant clusters

describes: it is iterative and affects prefixes (cf. Bavin Woock & Noonan 1979; Noonan 1992).
Both Okello and Noonan describe the blocking pattern of intervocalic consonants differently from
Archangeli & Pulleyblank and Bavin Woock & Noonan, claiming that suffix-initial consonants,
rather than clusters, block. Finally, both Okello and Noonan describe the harmony as strictly ATR
spreading. The examples of RTR harmony cited by Archangeli & Pulleyblank occur only with a
single suffix, the infinitive. Bavin Woock & Noonan also cite several examples of morphological
conditioning of infinitival suffix selection with RTR roots. Since the RTR harmony data are
particularly unclear, we focus only on ATR harmony.
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(17d–g) and singletons (17a–c, h). Finally, they show that it targets high vowels
(17e, g), mid vowels (17a, b, f, h) and low vowels (17c, d).

For each of these options for trigger, directionality, intervening consonant,
and target, there is a preference, which is instantiated in the absence of spreading
when that preference is not met. The preferences are listed in (18), along with
examples of the failure to spread under dispreferred conditions, as well as
references to the minimally different examples in (17) in which ATR spreading
does occur in the preferred environment.

(18) Conditions favoring ATR spreading in Lango

a. High vowel triggers

i. R-L spreading only when the trigger is high.
/nEn+Co/ [nEnno] ∗[nenno] ‘to see’ (cf. (17e–h))

ii. L-R spreading across a cluster only when the trigger is high.
/gwok+na/ [gwokka] ∗[gwokk@] ‘dog (1 sg.)’ (cf. (17c))

b. L-R directionality7

i. Mid vowel triggers spread only L-R.
/lIm+Co/ [lImmo] ∗[limmo] ‘to visit’ (cf. (17a, c))

ii. Spreading from a back trigger across a cluster to a non-high
target only L-R.
/dEk+wu/ [dEkwu] ∗[dekwu] ‘stew (2 pl.)’ (cf. (17d))

c. Intervening singletons

i. L-R spreading from mid vowels occurs only across a singleton.
/gwok+na/ [gwokka] ∗[gwokk@] ‘dog (1 sg.)’ (cf. (17a, c))

ii. R-L spreading from a back trigger to a non-high target only
across a singleton.
/dEk+wu/ [dEkwu] ∗[dekwu] ‘stew (2 pl.)’ (cf. (17h))

7 The greater strength of L-R spreading also seems to be instantiated in the fact that it iterates
and thus targets vowels non-adjacent to the original trigger, while R-L spreading iterates only
optionally (Bavin Woock & Noonan 1979; Poser 1982; Noonan 1992; Kaplan 2008). Like
Archangeli & Pulleyblank (1994) and Smolensky (2006), we abstract from the iterativity-
directionality connection here, though see Jurgec (2009) for a treatment of iterativity in vowel
harmony that appears compatible with our analysis.
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d. High target
R-L spreading from a back trigger across a cluster only to high
vowels.8

/dEk+wu/ [dEkwu] ∗[dekwu] ‘stew (2 pl.)’ (cf. (17g))

e. Front triggers
R-L spreading across a cluster to a mid target only from a front
trigger.
/dEk+wu/ [dEkwu] ∗[dekwu] ‘stew (2 pl.)’ (cf. (17f))

We would like an account of the harmony pattern that encodes each of these
preferences with a single constraint. No such account currently exists in either
OT or in rule-based approaches, as we discuss in section 5.2. We now show that
such an account is available under the assumption that constraints are weighted.

We follow Smolensky (2006) in ascribing the Lango trigger and direction-
ality preferences to constraints on the heads of feature domains, though our
implementation differs somewhat in the details. Headed domain structures for
ATR are illustrated in (19b) and (19d), in which the ATR feature domain spans
both vowels. In (19b) the head is on the rightmost vowel, and in (19d) the
head is leftmost. Unlike Smolensky (2006), we assume that a feature domain is
minimally binary — a relation between a head and at least one dependent. In the
disharmonic sequences in (19a) and (19c), the ATR feature is linked to a single
vowel, and there is no head–dependent relation. The assumption that the ATR
vowels in (19a) and (19c) are not domain heads is crucial to our definition of
the constraints on triggers below. In these representations, a vowel unspecified
for ATR is RTR; the use of underspecification here is purely for convenience.

(19) ATR structures

a.

ATR

p E t i b.

ATR
##

p e t i c.

ATR

p e t I d.

ATR
Z

Z

p e t i

We assume that it is definitional of the head of the domain that it is faithful to
its underlying specification: a head of an ATR domain is underlyingly ATR.

For spreading to occur, there must be a constraint that disprefers representa-
tions like those in (19a) and (19c) relative to (19b) and (19d), respectively. We
adopt a single constraint that penalizes both (19a) and (19c): SPREAD-ATR (see

8 Noonan (1992) notes that, for some speakers, mid vowels do assimilate to following high back
vowels across a cluster. This pattern can be straightforwardly accommodated by a different
weighting of our constraints, for example, one just like that in table 1, but with the weights of
both HEAD-FRONT and ATR-HIGH decreased to 1.
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Wilson 2003, Smolensky 2006, Jurgec 2009, and McCarthy 2009 for alternative
formulations of a spreading constraint).

(20) SPREAD-ATR: For any prosodic domain x containing a vowel specified
as ATR, assign a violation mark to each vowel in x that is not linked to
an ATR feature.

Since ATR harmony applies between roots and suffixes in Lango, the domain x
in (20) must include them and exclude prefixes.

The transformation of an underlying representation like (19a) into a surface
representation like (19b) is an instance of R-L spreading, which is dispreferred
in Lango. The representation in (19b) violates the constraint in (21).9

(21) HEAD-L: Assign a violation mark to every head that is not leftmost in its
domain.

For underlying (19a), HEAD-L and SPREAD-ATR conflict: SPREAD-ATR prefers
spreading, as in (19b), while HEAD-L prefers the faithful surface (19a).

The transformation of an underlying representation like (19c) into a surface
representation like (19d) is an instance of spreading from a mid trigger, which
is also dispreferred in Lango. This violates the constraint in (22), which also
conflicts with SPREAD-ATR.

(22) HEAD-HIGH: Assign a violation mark to every head that is not high.

Similarly, front triggers are preferred by HEAD-FRONT:

(23) HEAD-FRONT: Assign a violation mark to every head that is not front.

As for the constraint preferring spreading across singleton consonants, we
follow Archangeli & Pulleyblank (1994) in invoking a locality constraint:

(24) LOCAL-C: Assign a violation mark to every cluster intervening between
a head and a dependent.

And finally, as the constraint penalizing spreading to a non-high target,
we follow Archangeli & Pulleyblank (1994) and Smolensky (2006) in using a
co-occurrence constraint:

9 Bakovic (2000) and Hyman (2002) claim that preferences for L-R harmony are always morpho-
logically conditioned. A more typologically responsible analysis might replace HEAD-L with a
constraint demanding that heads be root vowels, since R-L harmony in Lango does always target
root vowels. Some support for this analysis comes from the dialect of Lango described by Okello
(1975), in which prefixes undergo harmony, but do not trigger it. We use HEAD-L for ease of
comparison with Archangeli & Pulleyblank (1994) and Smolensky (2006).
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(25) ATR-HIGH: Assign a violation mark to an ATR vowel that is not high.

With this large set of markedness constraints that can conflict with the pro-
spreading constraint SPREAD-ATR, faithfulness constraints are not necessary to
characterize the patterns of blocking and spreading we have examined, and so
we use only markedness constraints in the analysis we present here. A complete
analysis would also include the faithfulness constraints violated by spreading
(e.g. IDENT-ATR) and faithfulness constraints that penalize alternative means of
satisfying SPREAD-ATR (e.g., MAX for segment deletion). We exclude these for
reasons of space only.

Like Smolensky (2006), we consider as inputs all bisyllabic sequences con-
taining one ATR and one RTR vowel. The potential trigger ATR vowel is either
high front [i], high back [u], or mid [e]. The potential target RTR vowel is either
high [I] or mid [E]. We illustrate the analysis with just this subset of the vowels
to make the presentation as clear as possible; some of the exact combinations
are not attested in (17) and (18) or in Bavin Woock & Noonan (1979) (e.g., the
potential mid trigger is in fact [o] in (17) and (18)). For each ATR/RTR pair,
we consider sequences with both orderings of the vowels, and for each of these,
we consider inputs with intervening singletons and clusters. For each of these
inputs, we consider two candidates: the faithful one, and one in which the input
RTR vowel surfaces as ATR. The unfaithful candidates are assumed to have the
structure illustrated in (19b, d), where the underlying RTR vowel is parsed as
the dependent in the ATR domain.

In table 1, we provide a subset of the inputs, chosen for reasons we discuss
below, along with the two candidates. The optimal form is labeled the winner,
and the suboptimal candidate is labeled the loser (Prince 2002). A ‘W’ in
a constraint column indicates that the constraint favors the winner, and an
‘L’ indicates that the constraint favors the loser. All of the constraints assign
maximally one violation, so a constraint that favors the winner is violated once
by the loser, and a constraint that favors the loser is violated once by the winner.
The SPREAD-ATR constraint assigns a W when the optimal form has undergone
spreading, and an L when the optimal form does not. All of the other constraints
assign Ls in some cases of spreading, and Ws in some cases when the candidate
with spreading is suboptimal.
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11 8 4 4 2 2
Input W ∼ L SPREAD-ATR HEAD-HIGH HEAD-L LOCAL-C HEAD-FRONT ATR-HIGH

T1. iCE iCe ∼ iCE W L 9
T2. uCE uCe ∼ uCE W L L 7
T3. eCE eCe ∼ eCE W L L 1
T4. ECi eCi ∼ ECi W L L 5
T5. ECu eCu ∼ ECu W L L L 3
T6. ICe ICe ∼ iCe L W W 1
T7. iCCE iCCe ∼ iCCE W L L 5
T8. uCCE uCCe ∼ uCCE W L L L 3
T9. eCCI eCCI ∼ eCCi L W W 1

T10. ECCi eCCi ∼ ECCi W L L L 1
T11. ECCu ECCu ∼ eCCu L W W W W 1
T12. ICCu iCCu ∼ ICCu W L L L 1

Table 1 Informative winner-loser pairs for Lango vowel harmony, with con-
straint weights and margins of separation

There is no OT ranking of these constraints that will correctly make all of the
winners optimal. None of the constraints prefers only winners, and so Recursive
Constraint Demotion will immediately stall.

The topmost row shows the weights found by submitting these winner–loser
pairs to the implementation of our linear programming-based solver in OT-Help.
The rightmost column shows the resulting margin of separation between the
optimum and its competitor, that is, the difference between the harmony scores
of the winner and the loser. Since, in this case, the constraints assign a maximum
of one violation, the difference between the violation score of a winner and a
loser on a given constraint is at most 1. Therefore, the margin of separation is
simply the sum of the weights of the constraints that prefer the winner minus
the sum of the weights that prefer the loser. The fact that these numbers are
always positive shows that winners are correctly optimal under this weighting.10

The first six winner–loser pairs contrast L-R spreading and R-L spreading
across an intervening singleton. The first three are input configurations that
can yield L-R spreading, since the ATR vowel is on the left. Spreading is always
optimal, even with a target mid vowel, which violates ATR-HIGH when it harmo-
nizes. We have left out inputs with potential target high vowels, since with this
constraint set, if spreading targets a mid vowel, it is guaranteed to target high

10 A display of this type is available in OT-Help as the “comparative view”. In lieu of Ws and Ls, the
HG comparative view uses positive and negative integers, respectively.
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vowel in the same context. ATR-HIGH penalizes spreading to mid vowels, and
there is no constraint that specifically penalizes spreading to high vowels.

The second three inputs (T4–6) are ones that can yield R-L spreading, since
the ATR vowel occurs in the second syllable. Spreading in fact occurs with high
triggers (T4–5), but not mid ones (T6). To illustrate the case in which spreading
fails to occur, we include only an input with a potential high target /I/, since, if
a high vowel in a certain environment fails to undergo spreading, a mid vowel is
guaranteed to fail as well.

The blocking of spreading in (T6) is due to the joint effects of HEAD-HIGH and
HEAD-L: the sum of their weights is greater than the weight of SPREAD-ATR. An
analysis in terms of such a gang effect is necessary because neither HEAD-HIGH

alone (as in T3) nor HEAD-L alone (as in T4 and T5) is sufficient to override
spreading. This is thus one source of difficulty for an OT analysis with these
constraints: if either HEAD-HIGH or HEAD-L were placed above SPREAD-ATR to
account for (T6), the wrong outcome would be produced for one of (T3–5).

Inputs (T7–9) provide the conditions for L-R spreading across a cluster.
Spreading is blocked with a mid trigger (T9), in contrast to L-R spreading across
a singleton (T3). Again, we include only the input with the potential high target
to illustrate blocking, since spreading to a mid target violates a proper superset
of the constraints. Blocking here is due to the combined effects of HEAD-HIGH

and LOCAL-C, whose summed weights exceed that of SPREAD-ATR. That LOCAL-C
alone does not override SPREAD-ATR is shown in (T7-8). Again, since cumulative
interaction is needed to get the correct outcome with this constraint set, OT
ranking is not sufficiently powerful to deal with this set of winner-loser pairs.

Finally, inputs (T10–12) illustrate the least preferred context for spreading:
when the ATR vowel is on the right, and a cluster intervenes. Here, and in no
other context, spreading is blocked if the trigger is back and the target is mid.
This outcome is shown in (T11), which can be compared with (T2, 5, 8), in which
spreading does occur in other contexts. This is a gang effect between four con-
straints, HEAD-L, LOCAL-C, HEAD-FRONT, and ATR-HIGH, whose summed weight
exceeds that of SPREAD-ATR. That no set of three of these constraints is suffi-
ciently potent to overcome SPREAD-ATR is illustrated by inputs (T5, 8, 10, 12),
whose optimal outputs have spreading that violates one of the four possible
three-membered sets of these constraints. We do not include potential mid
triggers in the set of inputs since R-L spreading already fails to occur across a
singleton (T6), and spreading across a cluster violates in addition LOCAL-C.

In sum, the cumulative effect of any of the following three sets of constraints
overcomes the demands of SPREAD-ATR:

24



Potts, Pater, Jesney, Bhatt, Becker

(26) a. HEAD-HIGH, HEAD-L: No R-L spreading from mid vowels.

b. HEAD-HIGH, LOCAL-C: No spreading from mid vowels across a
cluster.

c. HEAD-L, LOCAL-C, HEAD-FRONT, ATR-HIGH: No R-L spreading from
back vowels across a cluster to a mid target.

No other set of constraints that does not include all of the members of one of the
sets in (26) is sufficiently powerful to override SPREAD-ATR: spreading occurs in
all other contexts. A correct constraint weighting must simultaneously meet the
conditions that the sum of the weights of each of the sets of constraints in (26)
exceeds the weight of SPREAD-ATR, and that the sum of the weights of each of
these other sets of constraints is lower than the weight of SPREAD-ATR. OT-Help
allows such a weighting to be found easily.

5.2 Comparison with alternatives

If the constraints in the previous section were considered either inviolable, as in
theories outside of HG and OT, or rankable, as in OT, they would be insufficient
for analysis of the Lango paradigm. In this section, we consider extant analyses
constructed under each of these assumptions about the activity of constraints.
We show that they suffer in terms of both generality and restrictiveness.

In their parametric rule-based analysis, Archangeli & Pulleyblank (1994)
posit five rules of ATR spreading. Each rule specifies directionality, and optional
trigger, target, and locality conditions. These are schematized in table 2. Cells
left blank indicate that the rule applies with all triggers, targets, or intervening
consonants.

Direction Trigger Target Locality
L-R VCV
L-R High
R-L High VCV
R-L High High
R-L High, Front

Table 2 The rules of Archangeli & Pulleyblank (1994), each of which specifies
directionality and optional trigger, target and locality conditions.
Cells left blank indicate that the rule applies with all triggers, targets
or intervening consonants.
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The conditions are inviolable constraints on the application of the rules.
Because of their inviolability, they must be limited to apply only to particular
rules: none of them are true generalizations about ATR spreading in the language
as a whole. Even though the directionality, trigger, and locality preferences do
not state completely true generalizations, they have broad scope in the ATR
system of Lango, and must therefore be encoded as constraints on multiple
rules. Thus, inviolability entails the fragmentation of each generalization across
separate formal statements.

By encoding the conditions as parametric options for rules, Archangeli &
Pulleyblank succeed in relating them at some level, but, in the actual statement
of the conditions on spreading in Lango, there is a clear loss of generality in
comparison with our weighted constraint reanalysis.11 We can further note that
there exists no proposal for how a learner sets such parameters for spreading
rules (see Dresher & Kaye 1990 on metrical parameters). Correct weights for our
constraints can be found not only with linear programming’s simplex algorithm,
but also with the perceptron update rule (Pater 2008; see also Boersma & Pater
2008) and a host of other methods developed for neural modeling and machine
learning.

Along with this loss of generality, there is a loss of restrictiveness.12 In
Archangeli & Pulleyblank’s parametric rule system, any set of rules with any
combination of conditions can co-exist in a language. Davis (1995) and McCarthy
(1997) discuss this aspect of the theory with respect to disjoint target conditions
on two RTR spreading rules; here we consider the further possibilities introduced
by trigger and locality conditions. One notable aspect of the Lango system is
that L-R spreading is “stronger” in all respects: there is no environment in which
R-L spreading applies more freely with respect to any of the conditions. This
“uniform strength” property is predicted by the HG analysis, but not by the one
using parametric rules. As Davis and McCarthy show, the latter theory allows
one rule to apply more freely with respect to one condition, and another rule
to apply more freely with respect to another condition. For example, with the
following parameter settings, L-R spreading targets only high vowels, while R-L
spreading has only high vowels as triggers. The set of triggers is unrestricted for

11 In one respect, Archangeli & Pulleyblank and Smolensky (2006) aim to generalize further than
we do: to derive high vowel trigger restrictions in ATR harmony from the unmarkedness of ATR
on high vowels. Pater (2009a) questions this move, pointing out that some harmony systems
spread preferentially from marked vowels. John McCarthy (p.c.) notes that the strength of
high triggers likely results from the greater advancement of the tongue root in high vowels. We
formally encode this irreducible phonetic fact as the HEAD-HIGH constraint.

12 The large space of possibilities afforded by the parametric theory is the impetus behind the
development of Archangeli & Pulleyblank’s own OT analysis of Lango, whose notion of “trade-
offs” may be seen as a sort of a precedent to our HG treatment.
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L-R spreading, whereas the set of targets is unrestricted for R-L spreading.

Direction Trigger Target
L-R High
R-L High

Table 3 Parameter setting in which L-R spreading targets only high vowels,
while R-L spreading has only high vowels as triggers.

To see that this system is impossible in HG, we can consider the required
weighting conditions. Along with HEAD-L, violated by R-L spreading, we include
in our constraint set HEAD-R, which penalizes L-R spreading. The weighting
conditions are illustrated in table 4, using the comparative format.

Input W ∼ L SPREAD-ATR HEAD-HIGH HEAD-L HEAD-R ATR-HIGH

e..I e..i ∼ e..I W L L
i..E i..E ∼ i..e L W W
E..i e..i ∼ E..i W L L
I..e I..e ∼ i..e L W W

Table 4 Inconsistent weighting conditions for a hypothetical pattern.

L-R spreading is illustrated in the top two rows: ATR can spread from a
mid vowel, violating HEAD-HIGH, but not to a mid vowel, which would violate
ATR-HIGH. R-L spreading, on the other hand, can violate ATR-HIGH, as in the
third row, but not HEAD-HIGH, as in the last one.

Recall that for the winners to be correctly optimal, in each row the sum of
the weights of the constraints assigning Ws must be greater than the sum of the
weights of the constraints assigning Ls. The resulting inequalities are in fact
inconsistent. When this problem is submitted to OT-Help, it returns a verdict of
infeasible.

By imposing other combinations of conditions on parameterized rules, there
is a range of systems that one can create in which R-L spreading is stronger in
one respect, and L-R is stronger in another. None of these can be generated by
weightings of our constraints, since they always require inconsistent weighting
conditions like those illustrated in table 4. The general inability of HG to generate
a system of this type can be understood as follows.13 If there is a condition on

13 This restriction is a generalization of the subset criterion on targets in bidirectional spreading in
OT that McCarthy (1997) attributes to personal communication from Alan Prince.
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spreading that applies in one direction but not another, then the sum of the
weights of the constraints violated by spreading in the banned direction must be
greater than the sum of the weights violated by spreading in the allowed direction
(since only the former can exceed the constraint(s) motivating spreading, like
our SPREAD). By assumption, the constraints violated under any target, trigger,
or locality condition are the same for both directions of spreading. Therefore,
this requirement reduces to the statement that the weight of the constraint(s)
violated specifically by spreading in the banned direction (e.g., HEAD-R) must
be greater than in the permitted one (e.g., HEAD-L). From this it should be clear
why imposing a second condition on spreading that holds only in the opposite
direction would result in inconsistency amongst the weighting conditions.

Smolensky’s (2006) analysis of Lango in terms of conjoined constraints
pursues a similar strategy to that of Archangeli & Pulleyblank (1994). Since OT
does not allow the pattern to be analyzed in terms of fully general constraints,
Smolensky uses constraint conjunction to formulate complex constraints in
terms of more basic formal primitives, much in the same way that Archangeli
& Pulleyblank use parameterization of rules. Again, we find the same basic
constraints instantiated multiple times in the analysis, this time across conjoined
constraints. To facilitate comparison with our analysis, we show this using the
basic constraints from section 5.1, rather than Smolensky’s own.

To get spreading from high vowel triggers L-R, but not R-L, we conjoin
HEAD-HIGH and HEAD-L. For spreading across clusters only from high vowels, we
conjoin HEAD-HIGH and LOCAL-C. Each of these conjoined constraints is violated
when both of the basic constraints are violated. In table 5, we show how the
conjoined constraints can resolve two of the sources of inconsistency in the
failed OT analysis using our constraint set from section 5.1. In this table, the
left-to-right ordering of the constraints provides a correct ranking (the dashed
lines separate constraints whose ranking is indeterminate). The first two rows
show the conjoined constraint analysis of spreading from mid vowels only L-R,
and the second two show the analysis of spreading across clusters from only high
vowels.
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Input W ∼ L

HEAD-HIGH

&
HEAD-L

HEAD-HIGH

&
LOCAL-C SPREAD-ATR HEAD-HIGH HEAD-L LOCAL-C

eCI eCi ∼ eCI W L
ICe ICe ∼ iCe W L W W
iCCI iCCi ∼ iCCI W L
eCCI eCCI ∼ eCCi W L W W

Table 5 The use of local conjunction to resolve inconsistency in the OT
analysis of Lango.

Here HEAD-HIGH appears in three constraints, much like the high trigger
condition is imposed on multiple rules in table 3. Thus, the conjoined constraint
analysis also succeeds only at the cost of a loss of generality relative to the
weighted constraint analysis. And, like the parametric theory, there is no learning
algorithm for constraint conjunction (Smolensky 2006: 139).

Furthermore, it shares with the parametric analysis the same loss of restric-
tiveness identified above. To show this, we provide in (6) a local conjunction
analysis of the hypothetical pattern in which only L-R spreading is triggered
by mid vowels (due to conjoined HEAD-HIGH&HEAD-L), and only R-L spreading
targets mid vowels (due to conjoined ATR-HIGH&HEAD-R).

Input W ∼ L

HEAD-HIGH

&
HEAD-L

ATR-HIGH

&
HEAD-R SPREAD-ATR HEAD-HIGH HEAD-L HEAD-R ATR-HIGH

e..I e..i ∼ e..I W L L
i..E i..E ∼ i..e W L W W
E..i e..i ∼ E..i W L L
I..e I..e ∼ i..e W L W W

Table 6 The use of local conjunction to resolve inconsistency in the analysis
of a hypothetical language.

For other cases in which local constraint conjunction in OT generates patterns
not produced by the unconjoined versions of the basic constraints in HG, see
Legendre et al. 2006 and Pater To appear.

The comparison of the typological predictions of the three analyses highlights
an important general point about comparisons between theories of constraint
interaction, which might be easy to overlook. One might be tempted to favor a
less powerful theory of constraint interaction on the grounds that it will offer
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a more restrictive theory of linguistic typology. However, the predictions of a
theory of constraint interaction depend also on the contents of the constraint
set. Insofar as a more powerful theory of constraint interaction allows attested
patterns to be analyzed with a more restricted constraint set, the resulting
typological predictions are likely to be in some ways more restrictive. This is
just as true of comparisons between HG and OT as it is of comparisons between
ranked and inviolable constraints.

We offer the Lango case study as a concrete illustration of this general point.
We are not asserting that it is a decisive argument in favor of HG over OT. We
offer it instead with the hope that it will inspire further use of HG in linguistic
analysis. There are a number of unresolved empirical issues surrounding Lango
vowel harmony (see fn. 5) and the related typology. In recent work, McCarthy
(2009) surveys the known cases in which bidirectional harmony has stronger
restrictions on spreading in one direction than another, and concludes that all
are doubtful for one reason or another. McCarthy’s critical survey is in fact
driven by the inability his proposed constraint set to produce such patterns when
they interact through OT ranking. Further cross-linguistic work driven by the
current positive HG results may well yield a different outcome. Not only is
further empirical study required to choose between HG and OT, but much further
theoretical work is also needed to determine the ways in which HG and OT
constraint sets can differ in analyses of existing languages, and the ways in which
the resulting theories differ in their predictions. As we show in the following
sections, OT-Help is invaluable not only in conducting analyses of individual
languages in HG, but also in determining the predictions that constraint sets
make in HG and OT.

6 HG typology

OT provides a successful framework for the study of linguistic typology, and this
has been a key component of its success. A central question is what kind of
typological predictions HG makes, especially since these predictions have been
claimed to be unsupported (Prince & Smolensky 1993/2004, 1997; Legendre
et al. 2006; cf. Pater 2009b). The present section begins to explore this question
via a number of computational simulations designed to highlight points of
convergence and divergence between the two frameworks. OT-Help is essential
here. It allows us to explore enormous typological spaces efficiently and to
compare the resulting predictions of both OT and HG.

All the data-files used in these simulations are downloadable from http:
//web.linguist.umass.edu/~OTHelp/data/hg2lp/. Readers can immediately
repeat our simulations using OT-Help. (A user’s manual is available as Becker &
Pater 2007.)
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6.1 Typology calculation

In OT, a language is a set of optimal forms picked by some ranking of the
constraints, and the predicted typology is the set of all the sets of optima picked
by any ranking of the constraints. OTSoft determines the predicted typology
by submitting sets of optima to the Recursive Constraint Demotion Algorithm
(RCDA) (Hayes et al. 2003; Tesar & Smolensky 1998a), which either finds a
ranking or indicates that none exists. OT-Help implements the RCDA as well as
our LP approach, so we can use it to conduct typological comparisons between
the two theories.

OTSoft builds up the typology by using an iterative procedure that adds a
single tableau at a time to the RCDA’s dataset. When a tableau is added to the
data set, the sets of optima that are sent to the RCDA are created by adding
each of the new tableau’s candidates to each of the sets of feasible optima that
have already been found for any previously analyzed tableaux. The RCDA then
determines which of these new potential sets of optima are feasible under the
constraint set. This procedure iterates until all of the tableaux have been added
to the data set. This is a much more efficient method of finding the feasible
combinations of optima than enumerating all of the possible sets of optima and
testing them all. OT-Help uses this procedure for both HG and OT.

6.2 The typology of positional restrictions

In the analysis of Lango, we pointed out that one can compare the typological
predictions of HG and OT only with respect to the constraint sets that each frame-
work requires to analyze some set of attested phenomena. In that discussion,
we compared HG to OT with local constraint conjunction, showing that the less
restricted constraint sets permitted by local conjunction yielded less restrictive
predictions for typology. Here, we compare HG and OT using non-conjoined
constraints, showing again that the greater power of HG can allow for a more
restrictive theory. Our example of positional restrictions is drawn from Jesney
2009, to which the reader is directed for a more detailed discussion; our aim
here is only to show how the example illustrates this general point.

Research in OT makes use of two types of constraint to analyze what seems to
be a single phenomenon: the restriction of phonological structures to particular
prosodic positions. These two types of constraint — positional markedness (e.g.,
Itô, Mester & Padgett 1995; Walker 2001, 2005; Zoll 1996, 1998) and positional
faithfulness (e.g., Beckman 1997, 1998; Casali 1996; Lombardi 1999) — capture
many of the same phenomena in OT, but neither one is sufficiently powerful
on its own to account for the full set of attested positional restrictions. In HG,
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however, positional markedness constraints are able to capture a wider range of
patterns, making positional faithfulness unnecessary for these cases.

Positional markedness constraints directly restrict marked structures to the
“licensing” position. Given voicing as the marked feature, for example, the
constraint in (27a) disprefers any surface instance of [+VOICE] that appears
unassociated with an onset segment, and the constraint in (27b) disprefers any
surface instance of [+VOICE] that appears unassociated with the initial syllable.

(27) a. VOICE-ONSET: Assign a violation mark to every voiced obstruent
that is not in onset position.

b. VOICE-SYLL1: Assign a violation mark to every voiced obstruent
that is not in the word-initial syllable.

To illustrate the differences between HG and OT, we consider a language
which allows both of the contexts identified in the constraints above — i.e.,
onsets and word-initial syllables — to license the marked [+VOICE] feature. In
such a language, /badnabad/ would surface as [bad.na.bat], with devoicing only
in the coda in a non-initial syllable. Table 7 shows how this language can be
analyzed in HG with our two markedness constraints and a single non-positional
faithfulness constraint. As in the Lango example, the Winner and Loser always
differ by a maximum of one violation, so we can indicate a preference for each
with ‘W’ and ‘L’, instead of indicating the degree of preference numerically.
The first row compares the desired optimum to an alternative that devoices all
obstruents in non-initial syllables. The Loser does better on VOICE-SYLL1, at the
expense of IDENT-VOICE. The second row compares the Winner to a Loser that
devoices all codas, which improves on VOICE-ONSET, again at the expense of
IDENT-VOICE. These two comparisons require each of the markedness constraints
to have values lower than that of the faithfulness constraint. The last row
compares the Winner to the fully-faithful candidate, which incurs violations of
both markedness constraints. This comparison requires the sum of the weights
of the markedness constraints to exceed that of the faithfulness constraint. The
input /bad.na.bad/ will thus surface as [bad.na.bat] provided that the individual
weights of the markedness constraints are insufficient to overcome the weight
of IDENT-VOICE, but the summed weights of the markedness constraints together
are. Table 7 shows a successful HG analysis. In each row, the sum of the weights
of the constraints preferring the Winner is greater by 1 than the sum of the
weights preferring the Loser.

32



Potts, Pater, Jesney, Bhatt, Becker

2 2 3
W ∼ L VOICE-ONSET VOICE-SYLL1 IDENT-VOICE

[bad.na.bat] ∼ [bad.na.pat] L W 1
[bad.na.bat] ∼ [bat.na.bat] L W 1
[bad.na.bat] ∼ [bad.na.bad] W W L 1

Table 7 A successful HG analysis of a language in which both onsets and
word-initial syllables license [+voice].

There is no OT ranking that will make the Winner correctly optimal in table
7; no constraint assigns only W’s, and so Recursive Constraint Demotion fails.
Analyzing this type of pattern in OT requires positional faithfulness constraints
like those defined in (28a) and (28b).

(28) a. IDENT-VOICE-ONSET: Assign a violation mark to every output seg-
ment in onset position whose input correspondent differs in voicing
specification.

b. IDENT-VOICE-SYLL1: Assign a violation mark to every output seg-
ment in the initial syllable whose input correspondent differs in
voicing specification.

The OT analysis with positional faithfulness constraints is shown in table 8.
Here, we include general *VOICE and IDENT-VOICE constraints, along with the
positional faithfulness constraints defined above. The left-to-right ordering of
the constraints is a correct ranking (the relative ordering of the two positional
faithfulness constraints is not crucial).

W ∼ L IDENT-VOICE-ONSET IDENT-VOICE-SYLL1 *VOICE IDENT-VOICE

[bad.na.bat] ∼ [bad.na.pat] W L W
[bad.na.bat] ∼ [bat.na.bat] W L W
[bad.na.bat] ∼ [bad.na.bad] W L

Table 8 A successful OT analysis using positional faithfulness to license
[+voice] in both onsets and word-initial syllables.

While positional faithfulness constraints are required in OT to capture this
pattern of licensing in onset and initial syllables, there are other domains where
positional faithfulness constraints pose problems. A version of OT with positional
faithfulness makes incorrect predictions regarding the realization of “floating
features” and other derived structures, for example, wrongly preferring that they
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target weak positions (Itô & Mester 2003; Zoll 1998). To see this, we consider an
input with a voice feature introduced by a second morpheme (/VCE+ katnakat/).
The desired optimum in this sort of case would realize the feature in a strong
position where it is generally licensed — e.g., [gatnakat], with voicing surfacing
on the initial onset. This is the outcome predicted by positional markedness, but
not by positional faithfulness, as table 9 shows. Positional faithfulness constraints
prefer that floating marked features be realized in contexts that are not normally
licensers, like the non-initial coda in the Loser [kat.na.kad].

W ∼ L IDENT-VOICE-ONSET IDENT-VOICE-SYLL1 VOICE-ONSET VOICE-SYLL1
[gat.na.kat] ∼ [kat.na.kad] L L W W

Table 9 A situation in which positional markedness constraints are required
in OT.

Cases like these, where positional faithfulness and positional markedness
each account for a subset of the attested phenomena, have led to a version of
OT that includes both types of constraint. A simple continuation of the examples
above illustrates the typological consequences. We submitted tableaux for each
of the inputs /badnabad/ and /VCE + katnakat/ to OT-Help. For HG, we included
only the positional markedness constraints, along with *VOICE and IDENT-VOICE,
while for OT we also included the positional faithfulness constraints. The results
are given in table 10. The potentially optimal outputs for /badnabad/ are shown
in the first column, and the potentially optimal outputs for /VCE + katnakat/ are
shown in the top row. Cells are labeled with the theory that can make the row
and column outputs jointly optimal.

[gat.na.kat] [kad.na.kat] [kat.na.gat] [kat.na.kad]
[bad.na.bad] HG & OT OT OT OT
[bad.na.bat] HG OT OT OT
[bad.na.pat] HG & OT OT OT OT
[bat.na.bat] HG & OT OT OT OT
[bat.na.pat] HG & OT OT OT
[pat.na.pat] HG & OT OT OT OT

Table 10 Typological predictions for HG with only positional markedness
constraints and OT with both positional markedness and positional
faithfulness constraints.

The HG results with positional markedness seem to match what is generally
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found typologically. The full typology may not be found for obstruent voicing,
but it is found across the larger set of cases that includes positional restrictions
and floating feature behavior for other structures (see Jesney 2009 for docu-
mentation). OT with both positional faithfulness and positional markedness
predicts that floating features can dock on any of the four positions defined by
the two parameters initial vs. non-initial syllable and onset vs. non-onset. Thus,
all of the docking sites for /VCE + katnakat/ can be made optimal, indicated
in table 10 by the label OT in all columns. In addition, there is practically no
predicted relation between the positions in which a feature is generally permit-
ted and where floating feature docking will occur. For example, this version of
OT can generate a language in which voicing is generally restricted to onsets
(/badnabad/, [bat.na.bat]), but in which a floating [+VOICE] feature docks onto
either a final coda (/VCE + katnakat/, [kat.na.kad]), or a medial one (/VCE +
katnakat/, [kad.na.kat]).

Further research is required to determine whether a version of HG without
positional faithfulness constraints can indeed deal with the full range of phe-
nomena attributed to these constraints in OT. These initial results suggest that
the pursuit of such a theory may yield a resolution to a long-standing problem in
OT. Furthermore, since there is not a subset relation in the types of languages
generated by the two theories of constraints and constraint interaction illustrated
in table 10, this example illustrates the general point that a fleshed-out theory
of some set of attested phenomena in HG will likely be in some ways both less
restrictive and more restrictive than an OT one.

6.3 Gradient Alignment and Lapse constraints

We now turn to an example concerning the typological spaces determined
by two different classes of constraint that have been used for stress typology
in OT. McCarthy & Prince (1993) propose an account of stress placement in
terms of Alignment constraints, which demand coincidence of edges of prosodic
categories. Gradient Alignment constraints are ones whose degree of violation
depends on the distance between the category edges: roughly, if x should be at,
say, the leftmost edge of a certain domain and it surfaces n segments (syllables)
from that edge, then x incurs n violations for the candidate containing it. Kager
(2005) proposes an alternative account of stress placement in OT that replaces
gradient Alignment constraints with a set of Lapse constraints, which penalize
adjacent unstressed syllables in various environments, assigning one mark per
violation, as with normal markedness constraints.

To examine the typological predictions of the two accounts, Kager constructed
OTSoft files (Hayes et al. 2003) with a set of candidate parsings for words from
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two to nine syllables in length. Separate files contained the appropriate violation
marks for each constraint set. For each of these, there were separate files
for trochaic (left-headed) feet and for iambic (right-headed) feet. (Here we
discuss only the trochaic results.) Using OTSoft, Kager found that the gradient
Alignment constraint set generated 35 languages, while the one with Lapse
constraints generated 25.

We used OT-Help to replicate Kager experiment using both OT and HG. The
results for the two constraint sets discussed above, derived from OTSoft files
prepared by Kager, are shown in table 11. We provide the number of languages
that each combination of constraints and mode of interaction predicts, out of a
total of 685,292,000 possible combinations of optima.

OT HG
Gradient Alignment 35 911

Lapse 25 85

Table 11 Number of predicted languages.

For both constraint sets, HG generates all the languages that OT does. HG
also generates a significant number of languages that OT does not.

A primary source of this dramatic increase is the manner in which gradi-
ent Alignment constraints assign violation marks. To illustrate, we show four
potential parses of a six-syllable word, and the violations they incur on two
constraints. Foot edges are indicated by parentheses, and prosodic word edges
by square brackets. ALIGN(FT, WD, L) demands that the left edge of every foot be
aligned with the left edge of the word and is violated by each syllable intervening
between these two edges. PARSE-SYL is violated by every syllable that fails to be
parsed into a foot.

(29) Violation profiles

ALIGN(FT, WD, L) PARSE-SYL

a. [(ta.ta)(ta.ta)(ta.ta)] 2 + 4 = 6 0
b. [(ta.ta)(ta.ta)ta.ta] 2 2
c. [(ta.ta)ta.ta.ta.ta] 0 4
d. [ta.ta.ta.ta.ta.ta] 0 6

ALIGN(FT, WD, L) and PARSE-SYL conflict in that every foot added after the
leftmost one satisfies PARSE-SYL at the cost of violating ALIGN(FT, WD, L). This
cost increases as feet are added: the second foot from the left adds two violations,
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the third one adds four, and so on. This increasing cost interacts with weighting
to produce a rich typology. With an appropriate weighting (e.g., a weight of 1
for ALIGN(FT, WD, L) and a weight of 2 for PARSE), a second foot will be added
to avoid violating PARSE, but not a third one: ((29)b) emerges as optimal. This
outcome would be impossible in HG, as it is in OT, if each non-leftmost foot
added the same number of violations of ALIGN(FT, WD, L) (or whatever constraint
replaces it).14

The HG typology with Lapse constraints is much closer to that of OT, but it
still yields more than a three-fold increase in predicted languages. We believe
that it would be a mistake to take this sort of result to argue definitively for
OT. First, it was arrived at using a constraint set designed for OT. As we have
shown in sections 5 and 6.2, weighted interaction allows for different constraints
than those used in OT, and these possibilities must be further explored to better
understand the theory and how it differs from OT. Second, the result also depends
on a particular mode of evaluation: here, the entire representation is evaluated
once and only once by the entire set of constraints. As Pater (2009b, To appear)
shows, changing assumptions about mode of evaluation yields positive results
for HG typology, in addition to those that McCarthy (2006; et seq.) demonstrates
for OT. (See also Pruitt 2008 on stress in Serial OT.)

6.4 A typological correspondence between OT and HG

The previous simulation highlights the fact that OT and HG can produce quite
different typological predictions. However, as we emphasized in the introduction,
the two frameworks do not invariably diverge. The present section describes a
simulation involving a fairly complex set of constraints for which OT and HG
deliver identical typological predictions. The result is especially striking in light
of the fact that some of the constraints are gradient Alignment constraints of the
sort that produced a large difference in the previous section.

The simulation involves the following set of constraints:

14 See McCarthy 2003 for extensive arguments for the replacement of gradient Alignment in OT.
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(30) a. TROCHEE: Assign a violation to every right-headed foot.

b. IAMB: Assign a violation to every left-headed foot.

c. ALIGN-FOOT-L: For every foot, assign a violation for every syllable
separating it from the left edge of the word.

d. ALIGN-FOOT-R: For every foot, assign a violation for every syllable
separating it from the right edge of the word.

e. ALIGN-HEAD-L: Assign a violation for every syllable separating the
main stressed syllable from the left edge of the word.

f. ALIGN-HEAD-R: Assign a violation for every syllable separating the
main stressed syllable from the right edge of the word.

The candidate-set for the simulation consisted of all logically possible parses
of words of two to five syllables in length into left- and right-headed bisyllabic
feet, with main stress on either one of the feet in the four- and five-syllable
words. The parses are all exhaustive, up to the limits imposed by the binary
minimum; there is no more than one unparsed syllable per word.

Here is a summary of the results of this simulation:

(31) Number of predicted languages with the constraint set in (30)

a. All logically possible combinations of optima: 1,536

b. OT: 18

c. HG: 18

Not only are the counts the same, but the languages themselves are the same.
(OT-Help does these calculations and comparisons automatically.)

An interesting aspect of this result is that the constraint set contains the
gradient Alignment constraints ALIGN-FOOT and ALIGN-HEAD, which, as we saw in
6.3, can lead to significant differences in the predictions of OT and HG. Crucially,
however, the constraint set contains neither PARSE-SYL nor WEIGHT-TO-STRESS.
Because it lacks PARSE-SYL, the trade-off in violations between it and ALIGN-FOOT

illustrated in (29) does not exist in the current set of violation profiles. Because
it lacks WEIGHT-TO-STRESS, a trade-off with ALIGN-HEAD discussed by Legendre
et al. (2006) and Pater (2009b) is also absent. We do not take this as evidence for
the elimination of WEIGHT-TO-STRESS and PARSE-SYL from metrical theory. Rather,
it serves to further illustrate the crucial point that it is the trade-offs between
violations of constraints, rather than the way that any one constraint assigns
violations, that lead to HG-OT differences. Like the NOCODA/MAX example in
the introduction, this is because the version of HG we are considering is an
optimization system.
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6.5 Summary

The typological investigations above, which mix qualitative analysis of specific
cases with large-scale quantitative assessment, point up the complexity of the
relationship between OT and HG. There are constraint sets for which the two
frameworks are aligned in their typological predictions, and there are constraint
sets for which they diverge wildly. The examples show that certain constraint
combinations can have apparently ill-effects in one framework even as they
produce desirable patterns in the other. These findings are just small pieces in
the larger puzzle of how the two approaches relate to one another. We think the
connection with LP, and the computational tools that go with it, can facilitate
rapid progress in putting the rest of the pieces together.

7 Conclusion

We have shown that Harmonic Grammar learning problems translate into linear
systems that are solvable using LP algorithms. This is an important mathematical
connection, and it has a practical component as well: our software package
OT-Help facilitates comparison between weighting and other constraint-based
approaches. This implementation, freely available and requiring no specialized
user expertise, gets us over the intrinsic practical obstacles to exploring weighting
systems. We can then focus attention on the linguistic usefulness of HG and
related approaches, as we have done with our in-depth analysis of Lango ATR
harmony (section 5) and our typological investigations (section 6).

The formal results of this paper are best summarized by drawing an explicit
connection with the fundamental theorem of linear programming (Cormen et al.
2001: 816):

Theorem 1 (The fundamental theorem of linear programming). If L is a linear
system, then there are just three possibilities:

a. L has an optimal solution with a finite objective function.

b. L is unbounded (in which case we can return a solution, though the
notion of optimal is undefined).

c. L is infeasible (no solution satisfies all its conditions).

Our method applies this theorem to understanding HG. The unbounded
outcome is not directly relevant; we always solve minimization problems, and
our systems are structured so that there is always a well-defined minimum.
The infeasible verdict is essential. It tells us that the current grammar cannot
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deliver the set of optimal candidates we have specified. This might be a signal
that the analysis must change, or it might prove that a predicted typological
gap in fact exists for the current constraint set. And if we are presented with
an optimal solution, then we know our grammar delivers the specified set of
forms as optimal. Moreover, we can then analyze the solution to learn about the
relations among our constraints.

We obtain these results efficiently; though the worst-case running time for
the simplex algorithm is exponential, it is extremely efficient in practice, often
besting its theoretically more efficient competitors (Cormen et al. 2001: 820–
821; Chvátal 1983: §4). What’s more, we have opened the way to applying
new algorithms to the problem, with an eye towards achieving an optimal fit
between the structure of linguistic systems and the nature of the computational
analysis. Our approach works for the full range of Harmonic Grammars as we
define them in section 2, including very large and complex ones. We therefore
see the translation of HG systems into linear systems solvable using LP methods
as providing a valuable tool for the serious exploration of constraint weighting
in linguistics. We also see great promise in the approach for developing theories
of learning, for determining the nature of the constraint set, and for gaining
a deeper mathematical and algorithmic understanding of the theory’s main
building blocks.
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