

OT-Help User Guide

Michael Becker and Joe Pater

University of Massachusetts, Amherst

1. Introduction

OT-Help (Becker, Pater & Potts 2007) is a free open-source Java-based program that aids
research in Optimality Theory (OT, Prince and Smolensky 1993/2004) and its cousin,
Harmonic Grammar (HG, Smolensky and Legendre 2006). OT-Help will find a
constraint ranking or weighting consistent with the data provided by the user, if one
exists. The solution can be displayed either in a standard tableau format, or as a
comparative tableau (Prince 2002a). OT-Help will also find the set of possible languages
in both OT and HG, given the user’s set of constraints. Typology can also be explored
interactively by selecting different sets of optima.

In the following, we provide a guide to the use of OT-Help, as well as a brief
introduction to the theory underlying it, especially with respect to HG, which is less well
known than OT.

In both OT and in the version of HG we are working with, a language is a set of
input-output pairs that are optimal under some ranking or weighting of a set of
constraints. As the number of constraints, inputs, and candidates increases, it becomes
increasingly difficult to find by hand a ranking for an intended set of optima, and
especially to find by hand the set of possible languages. The need for an automated
means of finding rankings and calculating typologies was recognized early on in the
development of OT, and been met by OT-Soft (Hayes, Tesar and Zuraw 2003) and Praat
(Boersma and Weenink 2007). With HG’s weighted constraints, these problems are
multiplied. OT-Help is the first tool that allows a user to quickly calculate the set of
languages generated by a given set of weighted constraints.

2. Ranking conditions and weighting conditions

In (1), we present a tableau for an input /kata/ with two output candidates: the intended
optimum, or ‘winner’ (káta) has a trochee, or left-headed foot, and the sub-optimal ‘loser’

Becker & Pater

(katá) has an iambic, right-headed foot. There are two constraints: IAMB, which demands
that all feet be right-headed, and TROCHEE, which demands that all feet be left-headed.

(1) /kata/ IAMB TROCHEE
  a. káta *
 b. katá *

We see that the constraint TROCHEE assigns no violation marks to the winner and one
violation mark to the loser, or in other words, TROCHEE prefers the winner to the loser.
The opposite is true of IAMB, which prefers the loser. The same information can be
represented in a comparative tableau (Prince 2002a), where W means “winner-
preferring” and L means “loser-preferring”.

A necessary property of a ranking that produces the intended result is that every loser-
preferring constraint be dominated by some winner-preferring constraint (Prince and
Smolensky 1993/2004, Tesar and Smolensky 1998, Prince 2002a). In our case, IAMB
must be dominated by TROCHEE, so the ranking we want is TROCHEE >> IAMB.

Prince and Smolensky (1993/2004: 236) consider (and reject) an alternative
formulation of OT that replaces constraint ranking with weighting, as in Harmonic
Grammar (HG; Smolensky and Legendre 2006). For a review of subsequent research
pursuing this alternative, and a comparison with OT, see Pater, Bhatt and Potts (2007a).
We use the translation of OT to HG introduced in Legendre, Sorace and Smolensky
(2006). Violation marks are translated into negative integers, and a candidate's harmony
is calculated by multiplying its violation score on each constraint by that constraint's
weight, and summing these products. The candidate with the maximal harmony is
optimal. Following Prince (2002b) and Pater et al. (2007a), we restrict weights to positive
reals. OT-Help also allows users to input positive constraint satisfaction scores, and to fix
the minimal values of constraint weights at zero (see Keller 2006), or any other non-
negative value.

Returning to our example, the harmony of káta is the weight of IAMB times -1,
plus the weight of TROCHEE times zero, which equals the negative weight of IAMB (3).
The similar calculation for katá is shown in (4).

(3) H(káta) = w(IAMB)•-1 + w(TROCHEE)•0 = -1•w(IAMB)

(4) H(katá) = w(IAMB)•0 + w(TROCHEE)•-1 = -1•w(TROCHEE)

(2) /kata/ IAMB TROCHEE
  káta ~ katá L W

OT-Help User Guide

(5) /kata/ IAMB TROCHEE
  a. káta -1
 b. katá -1

Since káta is the winner, its harmony must be higher than the harmony of katá (6a),
which entails that the weight of IAMB must be smaller than the weight of TROCHEE (6c):

(6) a. H(káta) > H(katá)
 b. -1•w(IAMB) > -1•w(TROCHEE)
 c. w(IAMB) < w(TROCHEE)

Statements of the form in (6c) are HG’s weighting conditions, which are parallel to OT’s
Elementary Ranking Conditions (Prince 2002a). We extend the notion of comparative
tableau to HG, as in (7). In an HG comparative tableau, the numerical difference between
the winner and the loser is indicated by a positive score for a winner-preferring constraint
and a negative score for a loser-preferring constraint. Given a weighting that correctly
chooses the optima, the sum of the weighted differences will be positive.

(7) /kata/ IAMB TROCHEE
  káta ~ katá -1 +1

Of the infinitely many sets of weights that achieve the intended result, we chose to set the
weight of IAMB at 1 and the weight of TROCHEE at 2. The outcome is shown below, where
the Harmony of each candidate is displayed in the rightmost column:

(8) Weights: 1 2
 /kata/ IAMB TROCHEE H
  a. káta -1 -1
 b. katá -1 -2

The hamony of káta is -1, which is higher than the harmony of katá, so káta is chosen as
optimal. Note that if the winner-loser difference scores in (7) are multiplied by the
weights in (8) and then summed, the result is indeed positive (+1).

To illustrate a somewhat more complicated case, we add another constraint, and another
input with two candidates.

(9) /kata/ IAMB TROCHEE *STRESS/HI
  a. káta -1
 b. katá -1
 /pika/
 a. píka -1 -1
  b. piká -1

Becker & Pater

*STRESS/HI assigns a violation to a stressed high vowel, such as first vowel in píka. The
question is whether there is a weighting that will pick a trochee as optimal for /kata/, but
an iamb as optimal for /pika/, as in the indicated optima in (9).

To make káta win over katá, the weight of IAMB must be smaller than the weight
of TROCHEE, as we’ve just seen. Now we can add the weighting conditions for the next
tableau, calculated in (10-12).

(10) H(píka) = w(IAMB)•-1 + w(TROCHEE)•0 + w(*STRESS/HI)•-1

= -w(IAMB) -w(*STRESS/HI)

(11) H(piká) = w(IAMB)•0 + w(TROCHEE)•-1 + w(*STRESS/HI)•0

= -w(TROCHEE)

(12) H(piká) > H(píka)
 -w(TROCHEE) > -w(IAMB) -w(*STRESS/HI)
 w(TROCHEE) < w(IAMB) + w(*STRESS/HI)

Combining the weighting conditions from (6c) and (12), we arrive at two inequalities that
need to be satisfied:

(13) w(IAMB) < w(TROCHEE)
 w(TROCHEE) < w(IAMB) + w(*STRESS/HI)

Can we assign weights that will satisfy both? While the answer is perhaps less obvious
than in the last case, one weighting that works is w(IAMB) = 1, w(TROCHEE) = 2,
w(*STRESS/HI) = 2. The tableau below shows that these weights assign the highest
harmony scores to the intended winners:

(14) Weights: 1 2 2
 /kata/ IAMB TROCHEE *STRESS/HI H
  a. káta -1 -1
 b. katá -1 -2
 /pika/
 a. píka -1 -1 -3
  b. piká -1 -2

We can also examine the possibility that in some language, píka would win over piká,
and katá over káta. Is there a weighting of our constraints that would produce this result?
The required weighting conditions are below:

(15) H(káta) < H(katá)
 -1•w(IAMB) > -1•w(TROCHEE)
 w(IAMB) < w(TROCHEE)

OT-Help User Guide

(16) H(piká) < H(píka)
 -w(TROCHEE) < -w(IAMB) -w(*STRESS/HI)
 w(TROCHEE) > w(IAMB) + w(*STRESS/HI)

Together, we get:

(17) w(IAMB) > w(TROCHEE)
 w(TROCHEE) > w(IAMB) + w(*STRESS/HI)

There is no set of non-negative weights we could assign to these three constraints that
would satisfy the two requirements above, so we can conclude that HG predicts the
impossibility of the language above.

For these small problems, finding correct constraint weightings is not much more
difficult than finding rankings. For larger problems, however, finding out whether a set of
candidates can be jointly optimal can be considerably more difficult in HG than in OT.
To address this difficulty, Pater, Potts and Bhatt (2007) introduce an application of Linear
Programming that returns a weighting if one exists, and indicates when no weighting of
the constraints will yield the intended optima. A web-based implementation of this
application is available as Potts, Becker, Bhatt and Pater (2007). OT-Help includes this
implementation, and extends it to the calculation of HG typologies.

3. Using OT-Help: The data file

OT-Help is designed to read files in an extension of Hayes et al.’s (2003) OT-Soft
format. These files are easiest to create in a spreadsheet program, such as the free
OpenOffice “Calc” or Microsoft Excel. To submit a file to OT-Help, it must be saved as a
text file (tab separated), which can then be dropped into the OT-Help window. Files that
are not plain-text OT-Soft files will be rejected. The text is read as HTML, so special
characters should be entered as they would be in a regular HTML file. Unicode files will
be read, but special characters will not display correctly.

The table below shows what the tableaux in (14) looks like in OT-Soft format:

(18) Iamb Trochee *Stress/Hi
 Iamb Trochee *Stress/Hi
 kata káta 1 1
 katá 1
 pika píka 1 1
 piká 1 1

The first column is the input column. Each new input defines the beginning of a new
tableau. The next column is the candidate column. In the example above, we see two
tableaux, each with one input and two candidates. The third column is the winner
marking column. In this column, any non-zero number will serve to mark an intended
optimum. The current version of OT-Help only allows a single optimum per tableau.

Becker & Pater

Note that under the definitions of optimality that we are working with, the optimum must
be evaluated as better than all other candidates; a tie is not sufficient. Therefore, if an
intended optimum has the same violation marks as another candidate, it cannot be made
optimal, and OT-Help will fail to find a solution in either OT or HG.

The first two rows are constraint names. You will see that most OT-Help screens
only display the names from the second line of your file, but following OT-Soft format,
both lines are required. Finally, the space below the first two lines and to the right of the
first three columns contains violation profiles. Again following OT-Soft format, these are
inserted as positive integers, though they display in OT-Help HG tableaux as negative
integers. If negative integers are entered into the OT-Soft file, they will display as
positive integers in the OT-Help display, and be treated as satisfaction scores (see
Legendre et al.'s 2006 discussion of 'positive HG'). Zeros may be left unspecified.

After the first portion of the input file, which follows the OT-Soft format exactly
and is required by OT-Help, optional parameters may be added. This is marked by the
addition of a new line, after the last tableau, that reads “[end of tableaux]”.

Among the options that are already implemented in the current version of OT-
Help is the “[minimal weight]” directive, which allows the specification of minimal HG
weights. In the absence of user specification, a default value of 1 is assumed. To specify a
default minimal value for all constraints, enter any number in the second column of the
“[minimal weight]” row. To specify a minimal weight for some specific constraint, enter
a number under its column.

In the example below, OT-Help will set 0.5 as the minimal weight for all
constraints, and 3 as the minimal weight for TROCHEE.

(19) Iamb Trochee *Stress/Hi
 Iamb Trochee *Stress/Hi
 kata káta 1 1
 katá 1
 pika píka 1 1
 piká 1 1
 [end of tableaux]
 [minimal weight] 0.5 3

Note that you may specify a minimal weight of zero, and this will be different from not
specifying a minimum, since the default value in OT-Help is 1. This is one case where
leaving a blank is different from specifying a zero.

The minimal weight values are irrelevant to OT calculations, and are ignored. In
future versions of OT-Help, we expect to add other user-specifiable options, such as
biases for particular constraints to be ranked or weighted higher or lower than other
constraints.

OT-Help User Guide

4. OT-Help navigation

OT-Help opens with a welcome screen, onto which you are invited to drop your input
file. If a valid file is received, and each tableau in the file specifies a unique winner, three
options are offered:
- Find all solvable languages (HG & OT)
- HG Solution
- OT Solution
If some tableaux in your file specify more than one winner, only the first option will be
offered. We now cover the three options in turn.

4.1 Find all solvable languages (HG & OT)

This option will find all the solvable languages in your file. Recall that in OT, a language
means a set of winners that can be made jointly optimal. In a solvable language, there is a
weighting (and possibly also a ranking) of the constraints that picks out the winner from
each tableau. OT-Help comes with two solvers:

- A solver for Harmonic Grammar, written by Christopher Potts, which uses the linear

programming translation from Pater et al. (2007b).
- A solver for Optimality Theory, written by Michael Becker, which uses the Recursive

Constraint Demotion algorithm (Tesar and Smolensky 1998, Prince 2002a).

When given a set of intended optima, a solver returns a verdict (solvable or not solvable),
and if a solution is found, it is returned as well, in the form of a weighting or ranking of
the constraints.

In calculating typologies, OT-Help follows a method introduced in Hayes et al.'s
(2003) OT-Soft. It starts by looking just at the first tableau of the input file. Each
candidate is tried out as a winner, and OT-Help attempts to find a weighting of the
constraints that chooses that candidate as a winner. If no candidate can be winner, the
search for solvable languages ends, since no matter what other tableaux specify, no
winner can be chosen from the current tableau.

In the more likely event that a subset of the candidates in the first tableau are
possible winners, each one of them is tried out with each of the candidates of the second
tableau, looking for weightings that pick out the winners from each tableau. This
continues with the remaining tableaux, until OT-Help finds the list of sets of winners that
have a weighting.

Once all the languages that are solvable in HG are found, each one is passed on to
the RCD module, to find a ranking of the constraints that picks out the same winners, if
one exists. We can solve for HG first because any set of winners that can be made

Becker & Pater

optimal in OT can also be made optimal in HG.1 Following this method allows us to
efficiently compare the results in the two theories. In future versions of OT-Help, we
expect to make available the possibility of calculating just the OT typology, which could
be useful for large problems.

When done, OT-Help will display all the languages it found, as shown in (20),
starting with ones that are solvable in both HG and OT, and then displaying languages
that are only solvable in HG. The list of languages is saved and will not be recomputed
until OT-Help is closed or a new input file is accepted.

(20)

At the bottom of the page is a link "Make .Collection file (Praat)". When this link is
clicked, OT-Help will create a new text file in the same directory as the input file, which
can be read by Praat (Boersma and Weenink 2007). It contains a grammar file that
includes all of the tableaux, and data files for each of the sets of winners that could be
rendered jointly optimal by some weighting of the HG constraints. The resulting file can
be opened directly in Praat. One can then test the various learners implemented in Praat
on their abilities to find a correct ranking or weighting for each of the languages.

We have used the current version of OT-Help to find the predicted typologies for
very large tableaux sets (see the discussion of the Kager 2006 typology in Pater et al.
2007b). It does, however, seem to have limits on the size of problems that it can process,
which we hope to overcome in future versions.

4.2 HG Solution

The HG Solution page can be reached either from an input file’s home page, or from the
list of solvable languages. This page starts with the verdict, as in (21), stating whether a
solution was found by the HG solver or the OT solver. To make the verdict more salient,

1 It is theoretically possible that the linear programming solver we use in our implementation could
misclassify sets of winners as infeasible, due to floating point errors, for example, but we have yet to see an
example of such an error.

OT-Help User Guide

the page’s background color will be a light blue if a solution was found, and an alarming
pink if no solution could be found.

(21)

Next, if the HG solver returned a successful verdict, the weights that were found for the
constraints are shown in each tableau. Note that if a tableau has any losers in it, you can
click on a loser to make it into a winner. This will refresh the page, passing the new
language to the HG solver. If an infeasible verdict was returned by the solver, the weights
are set to their minimal default values.

The HG solver finds the minimal weighting, that is, the set of weights whose
summed total is as small as possible. This minimization is bounded in two ways. The first
is by the minimal constraint weights discussed above. The second is by a condition that
difference between the winner's harmony and any loser must be at least 1. See Pater et al.
(2007b) for further discussion.

In addition to the standard view, which is displayed by default, there is a
comparative view, available from a link at the bottom of the page. Once clicked, winners
and losers and displayed in pairs, and instead of raw violation scores, difference in
violation scores are displayed (see also Goldwater & Johnson 2003). The last column
displays the total weighted difference between winners and losers.

This view is useful, for instance, for easily spotting harmonically bounded
candidates, which will have nothing but zeroes and positive numbers (if the harmonically
bounded candidate is a loser) or zeroes and negative numbers (if the harmonically

Becker & Pater

bounded candidate is a winner). The comparative view is also useful for spotting sets of
winner-loser pairs with identical vectors of differences in violation scores. Since each
winner-loser pair in such a set contributes the same information to learning, the analysis
would be unchanged if only one pair in the set was kept and the rest were discarded.

4.3 OT Solution

The OT Solution page can be reached either from an input file’s home page, or from the
list of solvable languages. This page starts with the verdict (22), stating whether the
RCD-based solver found a ranking. This verdict is also reflected in the page’s
background color, with blue for solvable systems and pink for insolvable ones.

(22)

If a ranking was found, it is reported. Otherwise, constraints that could not be ranked are
listed. This list can help in identifying what inconsistent data prevented the solver from
finding a ranking.

In standard view, the tableaux from the input files will be presented as entered,
with asterisks for violation marks. Any losers will be clickable to make them into
winners. In comparative view, winners and losers are displayed in pairs, and differences
in violation marks are noted with W (winner-preferring), L (loser-preferring), or blank,
following the convention in Prince (2002a). Such winner-loser pairs and their vector of
W’s, L’s and blanks are also known as ERC’s, for Elementary Ranking Conditions
(Prince 2002a).

In unsolvable systems, ERC’s that were left unaccounted for, i.e. that could not be
used to make a ranking argument are shown in red. This is useful for finding any sources
of inconsistent ranking arguments present in the data.

The comparative view also notes ERC’s that have at least one L but no W’s,
pointing out that with such an ERC in the set of tableaux, no ranking could be found.
Conversely, ERC’s that don’t have any L in them are removed from the list of ERC’s for
redundancy. Finally, only one from any set of identical ERC’s will be kept in the list of
ERC’s, to avoid redundancy.

OT-Help User Guide

5. Conclusions

We hope that OT-Help will serve as a useful tool for the study of ranked and weighted
constraint interaction. We also hope that its implementation as a set of java classes will
facilitate the use of its components in future applications. We welcome correspondence
from users with suggestions on how it could be improved in future versions, and also
from developers who would like to expand on its capabilities themselves.

References

Boersma, Paul and David Weenink. 2007. Praat: doing phonetics by computer. Software
version 4.6.09. Available at www.praat.org.

Hayes, Bruce, Bruce Tesar, and Kie Zuraw. 2003. OTSoft 2.1. software package,
http://www.linguistics.ucla.edu/people/hayes/otsoft/

Goldwater, Sharon and Mark Johnson. 2003. Learning OT Constraint Rankings Using a
Maximum Entropy Model. Proceedings of the Workshop on Variation within
Optimality Theory, Stockholm University.

Kager, R.W.J. 2006. "Rhythmic licensing: An extended typology". In Proceedings of the
3rd International Conference on Phonology, 5-31. Seoul: The Phonology-
Morphology Circle of Korea.

Keller, F. 2006. Linear Optimality Theory as a Model of Gradience in Grammar. In
Gradience in Grammar: Generative Perspectives, ed. Gisbert Fanselow, Caroline
Féry, Ralph Vogel, and Matthias Schlesewsky. Oxford University Press.

Legendre, Géraldine, Antonella Sorace, and Paul Smolensky. 2006. The Optimality
Theory–Harmonic Grammar connection. In Smolensky and Legendre (2006),
903–966.

Pater, Joe, Rajesh Bhatt and Christopher Potts. 2007a. Linguistic Optimization. Ms,
University of Massachusetts, Amherst.

Pater, Joe, Christopher Potts, and Rajesh Bhatt. 2007b. Harmonic Grammar with Linear
Programming. Ms, University of Massachusetts, Amherst. ROA-872.

Potts, Christopher, Michael Becker, Rajesh Bhatt and Joe Pater. 2007. HaLP: Harmonic
grammar with linear programming, version 2. Software available online at
http://web.linguist.umass.edu/~halp/.

Prince, Alan. 2002a. Arguing Optimality. In University of Massachusetts Occasional
Papers in Linguistics: Papers in Optimality Theory II, ed. Angela Carpenter,
Andries Coetzee, Paul de Lacy, 269-304. Amherst, MA: GLSA. [ROA-562].

Prince, Alan. 2002b. Anything Goes. In New century of phonology and phonological
theory, ed. Takeru Honma, Masao Okazaki, Toshiyuki Tabata, and Shin ichi
Tanaka, 66–90. Tokyo: Kaitakusha. ROA-536.

Prince, Alan, and Paul Smolensky. 1993/2004. Optimality Theory: Constraint interaction
in generative grammar. Ms, Rutgers University and University of Colorado at
Boulder, 1993. Revised version published by Blackwell, 2004. [ROA-537].

Becker & Pater

Smolensky, Paul, and Geraldine Legendre. 2006. The harmonic mind: From neural
computation to Optimality-Theoretic grammar. Cambridge, MA: MIT Press.

Tesar, Bruce and Paul Smolensky. 1998. Learnability in Optimality Theory. Linguistic
Inquiry 29: 229-268.

Department of Linguistics
South College
University of Massachusetts
Amherst, MA 01003

{michael,pater}@linguist.umass.edu

